

भारत सरकार Government of India विद्युत मंत्रालय Ministry of Power उत्तर क्षेत्रीय विद्युत समिति Northern Regional Power Committee

विषय: प्रचालन समन्वय उप-समिति की 225^{नं} बैठक की कार्यसूची। Subject: Agenda of the 225th OCC meeting.

प्रचालन समन्वय उप-समिति की 225^ª बैठक का आयोजन वीडियो कॉन्फ़्रेंसिंग के माध्यम से दिनांक 12.11.2024 को 10:30 बजे से किया जायेगा। उक्त बैठक की कार्यसूची उत्तर क्षेत्रीय वियुत् समिति की वेबसाइट <u>http://164.100.60.165</u> पर उपलब्ध है।

बैठक में सम्मिलित होने के लिए लिंक व पासवर्ड सभी सदस्यों को ई-मेल द्वाराप्रदान किया जाएगा।

कृपया बैठक में उपस्थित होने की सुविधा प्रदान करें।

The **225th** meeting of the Operation Co-ordination sub-committee will be conducted through Video Conferencing on **12.11.2024** from **10:30** Hrs. The agenda of this meeting has been uploaded on the NRPC web-site <u>http://164.100.60.165</u>.

The link and password for joining the meeting will be e-mailed to respective e-mail IDs in due course.

Kindly make it convenient to attend the meeting.

(डी. के. मीना) अधीक्षण अभियंता (प्रचालन)

सेवा में : प्रचालन समन्वय उप समिति के सभी सदस्य। To : All Members of OCC

List of addressee (via mail)

	OCC Members for FY 2024-25								
S. No	OCC Member	Category	E-mail						
1	NLDC	National Load Despatch Centre	nomination awaited rk.porwal@grid-india.in						
2	NRLDC	Northern Regional Load Despatch Centre	somara.lakra@grid-india.in						
3	CTUIL	Central Transmission Utility	kashish@powergrid.in						
4	PGCIL	Central Government owned Transmission Company	rtamc.nr1@powergrid.in rtamcjammu@powergrid.in cpcc.nr3@powergrid.in						
5	NTPC		<u>hrastogi@ntpc.co.in</u>						
6	BBMB		powerc@bbmb.nic.in						
7	THDC	Central Generating	ravindrasrana@thdc.co.in						
8	SJVN	Company	<u>sjvn.cso@sjvn.nic.in</u>						
9	NHPC		surendramishra@nhpc.nic.in						
10	NPCIL		df@npcil.co.in						
11	Delhi SLDC		gmsldc@delhisldc.org						
12	Haryana SLDC		cesocomml@hvpn.org.in						
13	Rajasthan SLDC		<u>ce.ld@rvpn.co.in</u>						
14	Uttar Pradesh SLDC	State Load Despatch Centre	cepso@upsldc.org						
15	Uttarakhand SLDC		se_sldc@ptcul.org						
16	Punjab SLDC		ce-sldc@pstcl.org						
17	Himachal Pradesh SLDC		<u>cehpsldc@gmail.com</u>						
18	DTL		<u>bl.gujar@dtl.gov.in</u>						
19	HVPNL		<u>cetspkl@hvpn.org.in</u>						
20	RRVPNL		<u>ce.ppm@rvpn.co.in</u>						
21	UPPTCL	State Transmission Utility	smart.saxena@gmail.com						
22	PTCUL		ce_oandmk@ptcul.org						
23	PSTCL		<u>ce-tl@pstcl.org</u>						
24	HPPTCL		gmprojects.tcl@hpmail.in						
25	IPGCL		<u>ncsharma@ipgcl-ppcl.nic.in</u>						
26	HPGCL		seom2.rgtpp@hpgcl.org.in						
27	RRVUNL	State Generating Company	<u>ce.ppmcit@rrvun.com</u>						
28	UPRVUNL	State Generating Company	cgm.to@uprvunl.org						
29	UJVNL		<u>gm_engg_ujvn@yahoo.co.in</u>						
30	HPPCL		gm_generation@hppcl.in						
31	PSPCL	State Generating Company & State owned Distribution Company	<u>ce-ppr@pspcl.in</u>						
32	UHBVN		nomination awaited (md@uhbyn.org.in)						
33	Jodhpur Vidyut Vitran Nigam Ltd.	State owned Distribution	addlcehqjdvvnl@gmail.com						
34	Paschimanchal Vidyut Vitaran Nigam Ltd.	Company (alphabetical rotaional basis/nominated by state govt.)	nomination awaited (md@pvvnl.org)						
35	UPCL		cgmupcl@yahoo.com						
36	HPSEB		cesysophpsebl@gmail.com						
37	Prayagraj Power Generation Co. Ltd.	IPP having more than 1000 MW installed capacity	sanjay.bhargava@tatapower.co <u>m</u>						

38	Aravali Power		amit.hooda01@gmail.com
20		-	rainaash satia@apraava.com
39	Ltd.,		<u>rajneesn.selia@apraava.com</u>
40	Talwandi Sabo		ravinder.thakur@vedanta.co.in
	Power Ltd.		
41	Nabha Power		Durvesh.Yadav@larsentoubro.c
	Limited		<u>om</u>
42	MEIL Anpara		arun.tholia@meilanparapower.co
	Energy Limited	-	<u>m</u>
43	Rosa Power		Suvendu.Dey@relianceada.com
	Supply Company		
	Ltd		
44	Lalitpur Power		avinashkumar.ltp@lpgcl.com
	Generation		
15	ME 1A Uria Nigam		rsiuneia@ntnc.co.in
45	I th		<u>isjuneja@nipc.co.m</u>
46	Adani Power	-	manoi taunk@adani.com
	Rajasthan Limited		
47	JSW Energy Ltd.		roshan.zipta@isw.in
	(KWHEP)		
48	IATA POWER	IPP having less than 1000	nomination awaited
48	RENEWABLE	MW installed capacity	nomination awaited (dhmahabale@tatapower.com)
48	RENEWABLE	MW installed capacity (alphabetical rotational	nomination awaited (dhmahabale@tatapower.com)
48	RENEWABLE	MW installed capacity (alphabetical rotational basis)	nomination awaited (dhmahabale@tatapower.com)
48	UT of J&K	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com
48	UT of J&K	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com
48 49 50	UT of Ladakh	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com
48 49 50	UT of Ladakh	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com
48 49 50 51	UT of J&K UT of Ladakh UT of Chandigarh	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in
48 49 50 51	UT of J&K UT of Ladakh UT of Chandigarh	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in
48 49 50 51	UT of J&K UT of Ladakh UT of Chandigarh	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in
48 49 50 51	UT of J&K UT of Ladakh UT of Chandigarh	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory.	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in
48 49 50 51 52	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in
48 49 50 51 52	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in nomination awaited (ssrivastava@noidapower.com)
48 49 50 51 52	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region (alphabetical rotational	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in nomination awaited (ssrivastava@noidapower.com)
48 49 50 51 52	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region (alphabetical rotational basis)	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in nomination awaited (ssrivastava@noidapower.com)
48 49 50 51 52 53	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region (alphabetical rotational basis) Private transmission	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in nomination awaited (ssrivastava@noidapower.com) nomination awaited (ssrivastava@noidapower.com)
48 49 50 51 52 53	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited Fatehgarh Bhadla Transmission	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region (alphabetical rotational basis) Private transmission licensee (nominated by central govt)	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in nomination awaited (ssrivastava@noidapower.com) nomination awaited (nitesh.ranjan@adani.com)
48 49 50 51 52 53	IATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited Fatehgarh Bhadla Transmission Limited	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region (alphabetical rotational basis) Private transmission licensee (nominated by central govt.)	nomination awaited (dhmahabale@tatapower.com) sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in nomination awaited (ssrivastava@noidapower.com) nomination awaited (nitesh.ranjan@adani.com)
48 49 50 51 52 53 53	TATA POWER RENEWABLE UT of J&K UT of Ladakh UT of Chandigarh Noida Power Company limited Fatehgarh Bhadla Transmission Limited NTPC Vidyut Vyapar Nigam Ltd	IPP having less than 1000 MW installed capacity (alphabetical rotational basis) From each of the Union Territories in the region, a representative nominated by the administration of the Union Territory concerned out of the entities engaged in generation/ transmission/ distribution of electricity in the Union Territory. Private Distribution Company in region (alphabetical rotational basis) Private transmission licensee (nominated by central govt.) Electricity Trader (nominated by central govt.)	nomination awaited (dhmahabale@tatapower.com) Sojpdd@gmail.com cepdladakh@gmail.com elop2-chd@nic.in elop2-chd@nic.in (ssrivastava@noidapower.com) nomination awaited (nitesh.ranjan@adani.com) nomination awaited (nitesh.ranjan@adani.com) nomination awaited (ceonyyn@ntpc.co.in)

Contents

A.1. Confirmation of Minutes	5	
A.2. Status of action taken on decisions of 224 th OCC meeting of NRPC	5	
A.3. Review of Grid operations	5	
A.4. Maintenance Programme of Generating Units and Transmission Lines	6	
A.5. Planning of Grid Operation	6	
A.6. Follow-up of issues from previous OCC Meetings- Status update	7	
A.7. NR Islanding scheme	8	
A.8. Coal Supply Position of Thermal Plants in Northern Region	8	
A.9. Status of availability of ERS towers in Northern Region (Agenda by NRPC S	Sectt.)	9
A.10. Updating outage Details by Generating Station/utilities (Agenda by CE/	A)9	
A.11. Installation of Co2 injection (seeding) system in HVDC Mundra and Ma Terminal system (agenda by ATIL)	ιhendraថ 10	garh
A.12. Procurement of cold spare transformers and reactor for Northern Regional by POWERGRID)	on (Ager 11	nda
A.13. Review of availability for power line crossing & OPGW diamond format upcoming new Transmission line projects (Agenda by POWERGRID NR-1)	ion by 16	
B.1. NR Grid Highlights for October 2024	16	
B.2. Demand forecasting and resource adequacy related	19	
B.3. Critical operation of Rajasthan Grid during upcoming winter season:	28	
B.4. Mock testing of islanding scheme and simulation studies	30	
B.5. Winter preparedness 2024-25	31	
B.6. Reactive power performance of generators	35	
B.7. Sharing of ATC/TTC assessment and basecase with NRLDC	38	

खण्ड-क: उ.क्षे.वि.स.

A.1. Confirmation of Minutes

224th OCC meeting was held on 18.10.2024. Minutes of the meeting were issued vide letter dt. 07.11.2024.

Decision required from Forum:

Forum may approve the minutes of 224th OCC meeting.

A.2. Status of action taken on decisions of 224th OCC meeting of NRPC

A.2.1. Status of action taken on decisions of 224th NRPC meeting is attached as **Annexure- A.0**.

A.3. Review of Grid operations

A.3.1. Power Supply Position (Provisional) for October 2024

Anticipated Power Supply Position v/s Actual Power Supply Position (Provisional) of Northern Region during the month of October-2024 is as under:

		En	nergy (M	U)	Peak (MW)			
State / UT	Req. / Avl.	Anticipa ted	Actua I	% Variatio n	Anticipate d	Actual	% Variatio n	
	(Avl)	130	145	11.6%	310	298	-3.9%	
CHANDIGART	(Req)	142	145	2.2%	304	298	-2.1%	
	(Avl)	3423	3243	-5.2%	5650	6161	9.0%	
	(Req)	2700	3244	20.1%	5650	6161	9.0%	
	(Avl)	6126	6161	0.6%	10263	11087	8.0%	
	(Req)	5601	6161	10.0%	10602	11087	4.6%	
HIMACHAL PRADESH	(Avl)	1069	1065	-0.4%	1935	1947	0.6%	
	(Req)	1084	1066	-1.7%	1915	1947	1.7%	
J&K and	(Avl)	1390	1546	11.2%	3090	2742	-11.3%	
LADAKH	(Req)	1872	1558	-16.8%	3235	3068	-5.2%	
	(Avl)	6150	6268	1.9%	10080	14311	42.0%	
FUNJAD	(Req)	6499	6268	-3.6%	12748	14311	12.3%	
	(Avl)	8330	9846	18.2%	17860	16206	-9.3%	
RAJASTRAN	(Req)	9461	9846	4.1%	15300	16206	5.9%	
UTTAR	(Avl)	13020	14226	9.3%	25500	26756	4.9%	
PRADESH	(Req)	12710	14227	11.9%	25500	26756	4.9%	
UTTARAKHAN	(Avl)	1287	1349	4.9%	2260	2412	6.7%	
D	(Req)	1271	1355	6.6%	2200	2412	9.6%	
NORTHERN	(Avl)	40924	43849	7.1%	76900	73700	-4.2%	
REGION	(Req)	41340	43869	6.1%	70500	73700	4.5%	

As per above, negative / significant variation (≥5%) in Actual Power Supply Position (Provisional) vis-à-vis Anticipated figures is observed for the month of October-2024 in terms of Energy Requirement for Delhi, Haryana, HP, UTs of J&K and Ladakh, Punjab, UP, and Uttarakhand and in terms of Peak Demand similar variation is noted

for Chandigarh, Delhi, UTs of J&K and Ladakh, Punjab, Rajasthan, and Uttarakhand. These states/UTs are requested to submit reason for such variations so that the same can be deliberated in the meeting.

All SLDCs are requested to furnish provisional and revised power supply position in prescribed formats on NRPC website portal by 2nd and 15th day of the month respectively for the compliance of Central Electricity Authority (Furnishing of Statistics, Returns and Information) Regulations, 2007.

A.4. Maintenance Programme of Generating Units and Transmission Lines

A.4.1. Maintenance Programme for Generating Units

The meeting on proposed maintenance programme for Generating Units for the month of December-2024 is scheduled on 11-November-2024 via Video Conferencing.

A.4.2.**Outage Programme for Transmission Elements**

The meeting on proposed outage programme of Transmission elements for the month of December-2024 is scheduled on 11-November-2024 via Video conferencing.

A.5. Planning of Grid Operation

A.5.1. Anticipated Power Supply Position in Northern Region for December 2024

The Anticipated Power Supply Position in Northern Region for December 2024 is as under:

State / UT	Availability / Requirement	Revised Energy (MU)	Revised Peak (MW)	Date of revision	
CHANDIGARH	Availability	120	290		
	Requirement	123	307	No Revision	
	Surplus / Shortfall	-3	-17	submitted	
	% Surplus / Shortfall	-2.4%	-5.4%		
	Availability	3320	6070	No Revision	
DELUI	Requirement	2174	5508		
DELHI	Surplus / Shortfall	1146	562	submitted	
	% Surplus / Shortfall	52.7%	10.2%		
	Availability	5800	10450		
HARYANA	Requirement	4250	8954	No Revision submitted	
	Surplus / Shortfall	1550	1496		
	% Surplus / Shortfall	36.5%	16.7%		

कार्यसूची: उ.क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225^{र्थं} बैठक

State / UT	Availability / Requirement Availability	Revised Energy (MU)	Revised Peak (MW)	Date of revision			
	-	620	2250	No Dovision			
PRADESH	Requirement	1145	2146	submitted			
	Surplus / Shortfall	-525	104	Jubinitiou			
	% Surplus / Shortfall	-45.9%	4.8%				
	Availability	1240	3130				
J&K and	Requirement	2062	3245	No Revision			
LADAKH	Surplus / Shortfall	-822	-115	submitted			
J&K and LADAKH and PUNJAB Constraints of the second	% Surplus / Shortfall	-39.9%	-3.5%				
	Availability	6100	10100				
PUNJAB	Requirement	4531	8991	No Revision			
	Surplus / Shortfall	1569	1109	submitted			
	% Surplus / Shortfall	34.6%	12.3%				
	Availability	9060	18360				
RAJASTHAN	Requirement	10886	19278	No Revision			
	Surplus / Shortfall	-1826	-918	- -			
	% Surplus / Shortfall	-16.8%	-4.8%				
	Availability	14290	27530	No Revision			
UTTAR	Requirement	10378	22277				
PRADESH	Surplus / Shortfall	3912	5253	Submitted			
	% Surplus / Shortfall	37.7%	23.6%				
	Availability	1333	2450	05-Nov-24			
OTTARARIAND	Requirement	1380	2490				
	Surplus / Shortfall	-47	-40				
	% Surplus / Shortfall	-3.4%	-1.6%	-			
	Availability	41883	73500				
NORTHERN	Requirement	36929	66700				
REGION	Surplus / Shortfall	4955	6800				
	% Surplus / Shortfall	13.4%	10.2%				

SLDCs are requested to update the anticipated power supply position of their respective state / UT for the month of December-2024 and submit the measures proposed to be taken to bridge the gap between demand & availability, as well to dispose-off the surplus, if any, in the prescribed format.

A.6. Follow-up of issues from previous OCC Meetings- Status update.

The updated status of agenda items is enclosed at *Annexure-A.I. All utilities are requested to update the status.*

A.7. NR Islanding scheme

Latest status of Islanding Scheme of NR is attached as Annexure-A.II.

Members may kindly deliberate.

A.8. Coal Supply Position of Thermal Plants in Northern Region

- A.8.1In 186th OCC meeting, it was agreed that coal stock position of generating stations in northern region may be reviewed in the OCC meetings on the monthly basis.
- A.8.2 Accordingly, coal stock position of generating stations in northern region during current month (till 05th November 2024) is as follows:

Station	Capacity (MW)	PLF % (prev. months)	Normative Stock Reqd (Days)	Actual Stock (Days)
ANPARA C TPS	1200	0.59	14	9.1
ANPARA TPS	2630	0.83	14	7.5
BARKHERA TPS	90	0.43	22	8.8
DADRI (NCTPP)	1820	0.23	22	10.0
GH TPS (LEH.MOH.)	920	0.13	22	22.3
GOINDWAL SAHIB	540	0.35	22	18.5
HARDUAGANJ TPS	1265	0.43	22	16.1
INDIRA GANDHI STPP	1500	0.61	22	28.8
KAWAI TPS	1320	0.60	22	22.6
KHAMBARKHERA TPS	90	0.49	22	13.2
KOTA TPS	1240	0.55	22	13.3
KUNDARKI TPS	90	0.41	22	12.3
LALITPUR TPS	1980	0.58	22	9.9
MAHATMA GANDHI TPS	1320	0.61	22	24.1
MAQSOODPUR TPS	90	0.43	22	12.5
MEJA STPP	1320	0.54	22	12.7
OBRA TPS	1094	0.56	22	6.9
PANIPAT TPS	710	0.43	22	27.4
PARICHHA TPS	1140	0.52	22	12.6
PRAYAGRAJ TPP	1980	0.59	22	15.6
RAJIV GANDHI TPS	1200	0.34	22	22.9
RAJPURA TPP	1400	0.51	22	12.9
RIHAND STPS	3000	0.74	14	10.2
ROPAR TPS	840	0.19	22	28.9

कार्यसूची: उ.क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225^{र्थं} बैठक

Station	Capacity (MW)	PLF % (prev. months)	Normative Stock Reqd (Days)	Actual Stock (Days)
ROSA TPP Ph-I	1200	0.56	22	15.3
SINGRAULI STPS	2000	0.66	14	8.5
SURATGARH TPS	1500	0.24	22	8.8
TALWANDI SABO TPP	1980	0.46	22	9.2
TANDA TPS	1760	0.55	22	10.9
UNCHAHAR TPS	1550	0.48	22	9.4
UTRAULA TPS	90	0.44	22	15.4
YAMUNA NAGAR TPS	600	0.25	22	13.8
CHHABRA-I PH-1 TPP	500	0.76	22	8.4
KALISINDH TPS	1200	0.33	22	9.8
SURATGARH STPS	1320	0.61	22	4.1
CHHABRA-I PH-2 TPP	500	0.76	22	8.8
CHHABRA-II TPP	1320	0.74	22	4.3

A.9. Status of availability of ERS towers in Northern Region (Agenda by NRPC Sectt.)

- A.9.1 In the 68th meeting of NRPC issues arising due to non-availability of sufficient ERS were discussed and it was decided that ERS availability monitoring shall be taken as rolling/follow-up agenda in OCC meetings for regular monitoring of ERS under different utilities in Northern region.
- A.9.2 Subsequently matter was deliberated in 211th OCC meeting wherein NRLDC representative briefed about the Requirement of ERS, recent experience in Northern Region, CEA Regulation on ERS, Govt. Guidelines and Present situation on ERS.
- A.9.3 NRPC Sectt. vide letter dated 26.09.2023 requested all transmission utilities of NR to furnish the length of transmission line (ckt-kms) and number of ERS towers available with them at different voltage levels (e.g. 220 kV, 400 KV 765 KV and + 500 kV HVDC via email at <u>seo-nrpc@nic.in</u>.
- A.9.4 In this regard, inputs received from utilities are attached as Annexure-A.III.

Transmission utilities of NR to update status.

A.10. Updating outage Details by Generating Station/utilities (Agenda by CEA)

- A.10.1. To enhance the monitoring of approved Planned Maintenance schedules, Member (GO&D), CEA has directed that actual maintenance availed against approved planned maintenance is to be updated on priority by respective RPCs regularly on monthly basis.
- A.10.2. In the 221st OCC meeting of NRPC, forum asked generating stations of NR to update the status of Planned Maintenance schedules versus actual maintenance availed for the previous month before every OCC meeting and it was decided that

to enhance the monitoring of approved Planned Maintenance schedules the said agenda item shall be taken as rolling/follow-up agenda in OCC meetings.

- A.10.3. In this regard, list of Planned Maintenance schedules versus actual maintenance availed for the year 2024-25 for the month of October 2024 is attached as Annexure-A.IV.
- A.10.4. In this, regard, Generating Station/utilities of NR are requested to submit each month the details of the maintenance activities that transpired against the originally planned schedule. Further, any deviations from the planned schedule shall be explained by the concerned generating entities.

Generating utilities of NR to update status.

- A.11. Installation of Co2 injection (seeding) system in HVDC Mundra and Mahendragarh Terminal system (agenda by ATIL)
 - A.11.1. ±500 kV HVDC Mundra Mahendragarh Transmission system is a critical interconnection between the western region and the Northern Region. The system is in service since the last 12 years. Every year, the system is taken into outage for 6-8 days majorly to check the valve cooling system with checks of deposition of the electrode cooling tubes. The reason of deposition is during circulation of DM water for cooling of thyristor, it meets aluminum alloy heat sinks of the thyristor. Very slow chemical process happens which releases aluminum in DM water while circulation within thyristor heat sink. Released aluminum particles in microns circulate inside water tubes of valve hall. Siemens has provided electrodes on colling tubes of valve hall. Aluminum particles with other impurities deposit on electrodes provided on colling tubes of valve hall. It is very critical to check these electrodes every year so that electrodes with high deposition can be replaced.
 - A.11.2. Some images of the deposition formed are:

A.11.3. While this electrode deposition and replacement activity had been carried out once a year, we have observed increased deposition in electrodes in the past 5 years. Below is the trend of deposition observed:

	Location	201 9	2020	2021	2022	2023	Grand Total
REPLACEMEN T OF GRADING	Mundra	15	20	32	44	47	158
ELECTRODE	Mahendragarh	7	9	18	25	28	87

- A.11.4. Moreover, ATIL has had 5 nos. of emergency outages availed in the past 2 years due to deposition and water leakage in the valve hall. The problem is aggravating and it is required that ATIL would have to check the deposition on electrodes on 6 monthly basis i.e. 16 days outage of HVDC system.
- A.11.5. ATIL had approached OEM (M/S Siemens) to provide a solution for such deposition. M/S Siemens has proposed installation of Co2 dosing (injection) system. The purpose of the CO2-dosing system is to inject gaseous CO2 in the cooling system in order to modify the conditions of the cooling water. According to the CO2 amount the pH-value of the cooling water and the conductivity changes. Through the conductivity value the injected CO2 amount is controlled. The CO2-dosing system is needed to reduce/stop the formation of aluminum coating on the grading electrodes used inside the converter. Thus, the injection system maintains the pH of DM water to 7 which prevents such scaling.
- A.11.6. ATIL has submitted that the above-mentioned solution is proven and globally recommended. Enclosed (**Annexure-V**) is a technical paper published by "Internal Journal of electrochemical science" on the subject with Siemens' experience on the same. In India, Power grid has installed the same in its Talcher and Kolar HVDC terminals and the results are very good. Co2 injection system has reduced impurity deposition which has resulted in long maintenance and emergency outages.
- A.11.7. The estimate cost of supply and installation is Rs 10 crore/pole/terminal (total Rs 40 crore for both Mundra and Mahendragarh). The installation would require an outage of 6-8 days outage/pole.
- A.11.8. ATIL seeks approval of the forum to install the Co2 injection system as an additional capitalization for technical upgradation project and requests approval of the outage duration for installation of the same as deemed available to ATIL.
- A.11.9. The cited subject was also discussed in the 51st TCC and 76th NRPC meeting wherein NRPC Board referred matter to OCC forum for detailed technical deliberation on this agenda.

Members may kindly deliberate.

A.12. Procurement of cold spare transformers and reactor for Northern Region (Agenda by POWERGRID)

A.12.1 Hon'ble CERC had set up a committee on dated 15.03.2018 consisting of representatives from CERC, NLDC, CEA & POWERGRID under the Chairmanship of the Chief (Engineering) of the CERC to assess the requirement of regional spares including bus reactors, line reactors, ICTs, etc. This would ensure reliability of the grid and reduce downtime in case of any failure/outage.

- A.12.2 In As per CERC Committee recommendation, the following spares transformers & reactors are required to be kept as spare for Northern Region as per POWERGRID assets base:
 - i) <u>Transformer:</u>

S I N o	State/ UT	MVA Rati ng and Pha se	Volt	Tota I insta Iled unit	Spar e Requ ired as per CER C repo rt	RPC Appr oved Spar es	Qty Propos ed for procur ement	App rox Cost (Rs. In Cror e)	Availa bility of RPC Spare	Remark S
1	DELHI	3Ø- 500 MVA	400/ 220	10	1	1	0		Tughla kabad	
2	DELHI	3Ø- 315 MVA	400/ 220	3	1	0	1	20.2 4		Mahara nibagh/ Bawana
3	HARYAN A	3Ø- 500 MVA	400/ 220	17	2	2	0		Manes ar GIS Panchk ula (Given to PSTCL)	
4	HARYAN A	3Ø- 315 MVA	400/ 220	22	2	1	0			
5	HIMACH AL PRADES H	3Ø- 315 MVA	400/ 220	3	1	0	1	20.2 4		Require d at Nallagar h
6	JAMMU & KASHMI R	3Ø- 315 MVA	400/ 220	3	1	0	1	20.2 4		Require d at Sambha
7	PUNJAB	3Ø- 500 MVA	400/ 220	12	1	1	0		Moga	
8	PUNJAB	3Ø- 315 MVA	400/ 220	10	1	2	0		01no. under procur ement Ludhia na - Given to DTL	
9	RAJAST HAN	3Ø- 500 MVA	400/ 220	32	2	1	0			
1 0	RAJAST HAN	3Ø- 315 MVA	400/ 220	18	1	1	0		Bhiwad i - Given to	

कार्यसूची:उ.क्षे.वि.स.की प्रचालन समन्वय उप-समिति की 225[#] बैठक

									RVPNL	
1	UTTAR	3Ø-	400/	15	1	1	0		Luckno	
1	PRADES	500	220						w	
	Н	MVA								
1	UTTAR	3Ø-	400/	21	2	2	0		02nos.	
2	PRADES	315	220						under	
	Н	MVA							procur	
			100/					10.0	ment	
1	UTTAR	30-	400/	1	1	0	1	13.2		Require
3	PRADES	200	132					1		d at
1			2201	2	1	1	0		Deiher	Ballia
L A		30-	220/	2	1		0		Raibar	
4			132						eiliy	
1	ΙΙΤΤΔΡΔ	307-	400/	1	1	0	1	26.8		Poquiro
5	KHAND	500	220	_ _				20.0		dat
		MVA	220							Roorkee
1	UTTARA	30-	400/	4	1	0	1	20.2		Require
6	KHAND	315	220		_	Ū	-	4		d at
		MVA								Dehradu
										n
1	CHANDI	3Ø-	220/	2	1	0	1	11.7		Require
7	GARH	160	66							d at
		MVA								Chandig
										arh
							Total	132.		
								74		

<u>Special type of</u> <u>Transformer</u>

S I N O	Location	MVA Rati ng and Pha se	Volta ge	Tota I insta Iled unit	Spar e Requ ired as per CER C repo rt	RPC Appr oved Spar es	Qty Propos ed for procur ement	App rox Cost (Rs. In Cror e)	Availa bility of RPC Spare	Remark S
1	GIS Maharani Bagh	3Ø- 500 MVA	400/ 220	2	1	0	1	30		HV bushing s: Oil to
2	GIŠ Baghpat	3Ø- 500 MVA	400/ 220	2	1	0	1	30		GIS IV Bushing s: Oil to Oil
							Total	60		

ii) <u>Reactors:</u>

SI N o.	State	Volt age Rati ng	Capa city in MVA R	Total insta lled Unit	Spare requir ed as per CERC Comm	RPC Appro ved Spare s	Qty Propos ed for procure ment	App rox Cos t (Rs.	Availa bility of RPC Spare	Rem arks
					ittee report			Cror e)		
1	Delhi	420 kV	125	3	1	0	1	13.0 0		
2	Haryan a	220 kV	25	2	1	0	1	5.00		
3	Haryan a	420 kV	50	12	1	0	1	9.26		
4	Haryan a	420 kV	80	7	1	0	1	11.2 5		
5	Haryan a	420 kV	125	11	1	0	1	13.0 0		
6	HP	420 kV	50	4	1	0	0			
7	HP	420 kV	63	2	1	0	1	9.56		
8	HP	420 kV	80	4	1	0	1	11.2 5		
9	HP	420 kV	125	1	1	0	1	13.0 0		
1 0	J&K	420 kV	50	5	1	0	0			
1 1	J&K	420 kV	63	3	1	0	1	9.56		
1 2	J&K	420 kV	80	2	1	0	1	11.2 5		
1 3	J&K	420 kV	125	2	1	0	1	13.0 0		
1 4	J&K	220 kV	25	1	1	0	1	5.00		
1 5	LADAK H	220 kV	25	2	1	0	1	5.00		
1 6	Punjab	420 kV	50	8	1	0	0			
1 7	Punjab	420 kV	63	4	1	0	1	9.56		
1 8	Punjab	420 kV	80	2	1	0	1	11.2 5		
1 9	Punjab	420 kV	125	7	1	0	1	13.0 0		
2 0	Punjab	220 kV	25	3	1	0	1	5.00		
2 1	Rajasth an	420 kV	50	22	2	0	0			
2 2	Rajasth an	420 kV	63	2	1	0	1	9.56		
2 3	Rajasth an	420 kV	80	7	1	0	1	11.2 5		
2 4	Rajasth an	420 kV	125	12	1	0	1	13.0 0		
2 5	UP	420 kV	50	36	2	0	1	9.26		

कार्यसूची:उ.क्षे.वि.स.की प्रचालन समन्वय उप-समिति की 225^{र्वं} बैठक

2	UP	420	63	11	1	0	1	9.56	
6		kV							
2	UP	420	80	16	1	0	1	11.2	
7		kV						5	
2	UP	420	125	21	2	0	1	13.0	
8		kV						0	
2	UP	220	25	1	1	0	1	5.00	
9		kV							
3	Uttrakh	220	25	2	1	0	1	5.00	
0	and	kV							
3	Uttrakh	420	50	0	0	0	1	9.26	
1	and	kV							
3	Uttrakh	420	80	1	1	0	1	11.2	
2	and	kV						5	
3	Uttrakh	420	125	2	1	0	1	13.0	
3	and	kV						0	
							Total	288.	
								33	

Special Type of Reactors

SI N o.	Locatio n	Volt age Rati ng	Capa city in MVA R	Total insta Iled Unit	Spare requir ed as per CERC Comm ittee report	RPC Appro ved Spare s	Qty Propos ed for procure ment	App rox Cos t (Rs. In Cror e)	Availa bility of RPC Spare	Rem arks
1	GIS Manesa r	420 kV	125	2	1	0	1	14.0 0		HV bushi ngs:
2	GIS Baghpat	420 kV	125	1	1	0	1	14.0 0		Oil to GIS
							Total	28		

Total

Grand Total: 509.07 Cr.

- A.12.3 In view of the above, Powergrid has requested for approval for procurement of cold spare transformers & reactors of various ratings as per CERC committee recommendation as mentioned above. The Tariff for the investment made is to be shared by constituents as per CERC notification.
- A.12.4 The cited subject matter was also discussed in the 51st TCC and 76th NRPC meeting wherein NRPC Board referred matter to OCC forum for detailed technical deliberation on this agenda.
- A.12.5 In the 51st TCC and 76th NRPC meeting MS, NRPC also conveyed that the status of availability/requirements of ICTs/Reactors may be taken as agenda in the OCC meetings regularly to know the present scenario of these assets.

Members may kindly deliberate.

A.13. Review of availability for power line crossing & OPGW diamond formation by upcoming new Transmission line projects (Agenda by POWERGRID NR-1)

- A.13.1. This is in reference to the NRTS Availability and the classification of outages required for power line crossings and OPGW diamond formations associated with upcoming transmission line projects. Powergrid NR-1 has mentioned that these outages are not currently being considered under the "LCSD" category (Line Shutdowns for Construction Activities of New Systems Executed by Licensee) on availability certification, which accurately reflects the purpose of these shutdowns as they support essential construction activities for new system integrations.
- A.13.2. The construction of the 765kV Bhadla-2 to Sikar-2 transmission line, as approved in the 6th NCT meeting held on 30.09.2019 (MoM point no-4.3.5, pages 11-12 copy attached as Annexure-A.VI) is progressing steadily. Additionally, the commissioning of the Fatehgarh-2 to Bhadla-2 Circuits 3 & 4 is underway as per the approved 6th NCT scheme. Both these critical transmission lines require planned shutdowns at multiple locations where they cross existing 765kV and 400kV lines. These planned shutdowns, intended for power line crossings and OPGW diamond formations, have been discussed and formally approved in the outage meeting of OCC.
- A.13.3. Powergrid NR-1 has requested that total outage period (mentioned in attached **Annexure-A.VII**) may be reviewed and considered deemed available for power line crossing & OPGW diamond formation by upcoming new Transmission line projects.

Members may kindly deliberate.

खण्ड-ख: उ.क्षे.भा.प्रे.के.

Part-B: NRLDC

B.1. NR Grid Highlights for October 2024

S.No	Constituent s	Max Deman d met (in MW) Date & Time of Max Deman d met		Max Consumptio n (in MUs)	Date of Max Consumptio n	Averag e Deman d met (in Mus)
1	Chandigarh	298	01.10.2 4 at 19:00	6.0	31.10.24	4.7
2	Delhi	6161	03.10.2 4 at 15:30	128.3	31.10.24	104.8
3	Haryana	11087	04.10.2 4 at 19:00	235.2	31.10.24	198.8
4	H.P.	1947	25.10.2 4 at	36.8	31.10.24	34.4

कार्यसूची: उ.क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225^{वीं} बैठक

			07:45			
5	J&K	2742	03.10.2 4 at 19:00	53.7	06.10.24	49.9
6	Punjab	14311	04.10.2 4 at 15:15	289.5	31.10.24	204.4
7	Rajasthan	16206	29.10.2 4 at 12:00	343.8	13.10.24	317.6
8	U.P	26756	04.10.2 4 at 19:20	524.5	27.10.24	459.0
9	Uttarakhand	2412	09.10.2 4 at 19:00	48.4	31.10.24	44.2
10	Northern Region	73686	04.10.2 4 at 20:00	1665.7	31.10.24	1417.8

*As per SCADA

- In Oct'24, the Maximum energy consumption of Northern Region was 1666 MUs on 31th Oct'24 and it was 17 % higher than Oct'23 (1422 MU 10th Oct'23)
- In Oct'24, the Average energy consumption per day of Northern Region was 1418 MUs and it was 14 % higher than Oct'23 (1248 MUs/day)
- In Oct'24, the Maximum Demand met of Northern Region was 73686 MW on 04th Oct'24 @20:00 hours (as per scada data) as compared to 67829 MW on 10th Oct'23 @12:47hours.

Comparison of Average Energy Consumption (MUs/Day) of NR States for the Oct'23 vs Oct'24

क्षेत्र/राज्य	अक्टूबर- 2023	अक्टूबर- 2024	% अंतर
<u>चंडीगढ</u> ़	4.1	4.7	14.6%
दिल्ली	90.5	104.8	15.9%
हिमाचल प्रदेश	32.6	34.4	5.6%

हरियाणा	172.4	198.8	15.3%
जम्मू और कश्मीर	48.5	49.9	2.8%
पंजाब	173.9	204.4	17.6%
राजस्थान	294.5	317.6	7.8%
उत्तराखंड	40.0	44.2	10.4%
उत्तर प्रदेश	391.1	459.0	17.4%
उत्तरी क्षेत्र	1247.6	1417.8	13.6%

Energy Consumptions

Frequency profile

Month	Avg. Freq. (Hz)	Max. Freq. (Hz)	Min. Freq. (Hz)	<49.90 (% time)	49.90 – 50.05 (% time)	>50.05 (% time)
Oct'24	50.00	50.388 (25.10.24 at 13:03:30 hrs)	49.585 (16.10.24 at 17:58:20 hrs)	4.9	80.3	14.8
Oct'23	49.99	50.30 27.10.23 at 16:03:50 hrs	49.47 16.10.23 at 14:56:40 hrs	8.9	74.4	16.7

कार्यसूची: उ.क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225 ^{वं} बैठक

Reservoir Level and Generation on Last Day of Month

Reservoir Level comparison w.r.t. last year as on 31.10.2024:

DOM NOT NOT NOT		Parameters		Present l	Parameters	LAST YEAR		
RESERVOIR	MDDL (Mts)	FRL (Mts)	Energy Content at FRL	Level (Mts)	Energy (MU)	Level (Mts)	Energy (MU)	
Bhakra	445.62	513.59	1,728.8	499.18	1,065	506.14	1,367	
Chamera-I	748.75	760	753.95	758.7	2	-	-	
Gandhisagar	381	399.9	725	-	-		-	
Jawahar Sagar	295.96	298.7	2.01	-	F	-	-	
Koteshwar	598.5	612.5	610.73	611.65	5	611.78	5	
Pong	384.05	426.72	1,084	411.83	556	420.02	889	
RPS	343.81	352.81	175.66	-	-	-	12	
RSD	487.91	527.91	390.3	501.27	113	514.15	259	
Rihand	252.98	268.22	860.5	263.93	540	259.32	268	
Tehri	740.04	830	1,164.11	827.99	1,122	824.89	1,057	
TOTAL	-	-	-	E (3,403	-	3,845	

Detailed presentation on grid highlights of Oct'2024 will be shared by NRLDC in OCC meeting.

B.2. Demand forecasting and resource adequacy related

Hon'ble CERC In the matter of Planning for safe, secure, and reliable integrated operation of the power system during critical periods arising on account of seasonal variations wherein the electricity demand increases rapidly by undertaking specific measures to mitigate the risks on the power system, under clause (h) of sub-section (1) of Section 79 of the Electricity Act, 2003 and the Regulation 31 of the Central Electricity Regulatory Commission (Indian Electricity Grid Code) Regulations, 2023 has issued suo-motto order 9/SM/2024 dated 07.10.2024. Order is available at **Annexure-B.I.**

Commission has issued the following directions to NLDC, RLDCs, and SLDCs in connection with the implementation of Regulations 31 and 33 of the Grid Code to

address the anticipated surge in demand of electricity during October 2024 on account of seasonal variations:

- a) All the State Load Despatch Centres and RLDCs shall furnish the details of operational planning undertaken by them in terms of Regulation 31(4) (a) of the Grid Code especially for October 2024. RLDC shall validate the adequacy of resources in terms of Regulation 31(4)(b) of the Grid Code.
- b) All State Load Despatch Centres and Regional Load Despatch Centres shall prepare the worst-case scenario due to possible surge in demand during the period 1.10.2024 to 31.10.2024 in their respective control area and submit within seven days to the Commission with a copy to National Load Despatch Centre.
- c) The State Load Despatch Centres or Regional Load Despatch Centres, as the case may be, should assess their demand-generation scenario in the upcoming months, ensure the optimum generation, avoid undesirable planned outages, and advise the generating company to offer their availability. The State Load Despatch Centre or Regional Load Despatch Centre shall ensure the optimum scheduling during the shortage period and surplus power to get despatched during the deficit period.
- d) The Distribution Companies, in case of a shortage scenario, can procure the power from surplus or requisitioned capacity of other states so that optimum despatch can be ensured for safe and reliable power system operations. The State Load Despatch Centre shall monitor the generation-demand deficit of the respective distribution companies.
- e) The generating companies operating their plant with capacity less than its installed capacity due to technical issues, i.e., capacity under partial outage or forced outage, are advised to fix the issues to ensure the maximum generation capacity on-bar.
- f) The draw schedule of the respective control area needs to adhere to prevent the reduction of system frequency. The State Load Despatch Centre or Regional Load Despatch Centre, as the case may be, shall monitor the deviation of the key system parameters.
- g) The State Load Despatch Centres or Regional Load Despatch Centres, as the case may be, shall issue the system alerts to their respective grid-connected entities for the possible deficit during the likely surge in demand

The Regional Load Despatch Centres and State Load Despatch Centres shall submit the report on the implementation of the above measures, a load-generation scenario in their respective control areas, and any other measures taken to address the deficit of power supply during the period 1.10.2024 to 31.10.2024.

NLDC, RLDCs, and SLDCs were directed to submit their responses to the measures contained in para 9 of this order by 16.10.2024.

As per the information available with NRLDC, only HP & Uttarakhand have submitted their formal reply to CERC.

Punjab and J&K have shared some information with NRLDC, but formal communication to CERC from their side is yet to be done.

Whereas other states have neither submitted their response to CERC nor NRLDC with regard to order 9/SM/2024 dated 07.10.2024.

It is requested that Delhi, UP, Haryana, Rajasthan and Chandigarh may provide update in this regard. Punjab and J&K are also requested to provide update whether they have submitted the information to CERC.

With reference to the Clause 31(2) of Central Electricity Regulatory Commission-IEGC Regulations, 2023 and the Operating Procedure of NRLDC prepared in accordance with the same, each SLDC has to furnish the demand estimation for day ahead, week ahead, month ahead (with time block wise granularity) and demand estimation for year ahead (with hour granularity). The sub-clause 31(2) (h) of IEGC-2023 states the following timeline for the submission of demand estimate data to RLDC.

Type of Demand Estimation	Timeline
Daily	10:00 hours of previous day
Weekly	First working day of previous week
Monthly	Fifth day of previous month
Yearly	30th September of previous year

Status of Day Ahead Forecasting & generation adequacy submission status for October-2024 as per Clause 31(4) (a) & (b) of IEGC-2023 is shown below:

S.n o	State	01- Oct	02- Oct	03- Oct	04- Oct	05- Oct	06- Oct	07- Oct	08-Oct	09- Oct	10- Oct	11- Oct	12- Oct	13- Oct	14- Oct	15- Oct	16- Oct	17- Oct	18- Oct	19- Oct	20- Oct	21- Oct	22- Oct	23- Oct	24- Oct	25- Oct	26- Oct	27- Oct	28- Oct	29- Oct	30- Oct	31- Oct
1	JK & Ladakh(UT)	N	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	N
2	Punjab	Y	N	N	N	N	N	Y	Y	Y	Y	Y	N	N	N	N	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
3	UP	Y	N	Y	Y	Y	N	Y	Y	Y	Y	N	N	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
4	Uttrakhand	Y	Y	Y	Y	Y	N	Y	Y	Y	N	Y	N	N	Y	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y	γ	N	Y	Y	N	N
5	Chandigar h	Y	Y	Y	Y	Y	Y	Y	Y	Y	γ	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
6	Rajasthan	Y	Ν	Y	N	N	Y	N	Y	N	Ν	N	N	N	Ν	N	N	Y	Ν	Y	Ν	Y	N	N	Y	Y	Y	N	N	N	N	N
7	Delhi	N	Y	Ν	N	Y	Y	Y	Y	N	Y	Y	Y	N	N	Y	Y	Y	N	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
8	Haryana	N	N	Y	N	Y	Y	Ν	N	Y	Ν	N	Y	N	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Ν	Y	N	Y	Y	Y	N	Y	Y
9	HP	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Ν	Y	Y	Y	Y	Y	Y	Y

Status of Week Ahead Forecasting data Submission status for the month of October 2024 is shown below:

timeline.

S.no	State	07-10-2024 to 13-10-2024	14-10-2024 to 20-10-2024	21-10-2024 to 27-10-2024	28-10-2024 to 03-11-2024	04-11-2024 to 10-11-2024
1	JK & Ladakh(UT)	Ν	N	N	N	N
2	Punjab	Ν	N	N	N	N
3	UP	N	N	N	Y	Y
4	Uttrakhand	N	N	N	N	N
5	Chandigarh	N	N	N	N	N
6	Rajasthan	N	N	N	N	N
7	Delhi	N	N	N	N	N
8	Haryana	N	N	N	N	N
9	HP	Y	Y	Y	Y	Y

Status of Month Ahead (October'2024) and Year Ahead Demand forecasting submission status:

Region	State	Monthly	Yearly
	otato	Data submission	Data submission
		(Y/N)	(Y/N)
	Punjab	Ν	N
	Haryana	Ν	Ν
	Rajasthan	N	Ν
	Delhi	Ν	Y
	UP	Y	Y
NR	Uttarakhand	N	N
	HP	Y	Y
	J&K	Ν	N
	Chandigarh	Ν	Ν
	Railways NR	Ν	Ν

In accordance with above, all SLDCs are requested to timely furnish the demand estimation data along with generation adequacy data as per the formats available at <u>https://drive.google.com/drive/folders/1KWY4G9gTBLV5wTJkhGEIeRptKP-QbhjL?</u> <u>usp=drive_link</u> to NRLDC through mail (nrldcmis@grid-india.in) and FTP as per above

The relevant clauses from IEGC 2023 related to demand forecasting exercise and resource adequacy exercise are tabulated below:

Clause No.	Responsible Entity	Compliance Assignment
5.2(i)	Each distribution licensee within a State	Estimate the demand in its control area including the demand of open access consumers and factoring in captive generating plants, energy efficiency measures, distributed generation, demand response, in

		different time horizons, namely long-term, medium term and short-term.
5.2(ii)	STU (on behanlf of distribution licensee)/other designated agency	Estimate the demand for the entire State duly considering the diversity in different time horizons, namely long-term, medium term and short-term.
5.3(a)	Each distribution licensee	 (i) assess the existing generation resources and identify the additional generation resource requirement to meet the estimated demand in different time horizons, (ii) prepare generation resource procurement plan.
5.3(c)	Each distribution licensee	Generation resource procurement planning (specifying procurement from resources under State control area and regional control area) shall be undertaken in different time horizons, namely long-term, medium term and short- term to ensure (i) adequacy of generation resources and (ii) planning reserve margin (PRM) taking into account loss of load probability and energy not served as specified by CEA.
5.3(d)	STU (on behalf of distribution licensee)/other designated agency	 STU or other designated agency by state comission shall provide to NLDC, the details regarding demand forecasting, assessment of existing generation resources such other details as may be required for carrying out a national level simulation for generation resource adequacy for States.
5.3(e)	NLDC	Based on the information received, NLDC shall carry out a simulation to assist the States in drawing their optimal generation resource adequacy plan.
5.3(f)	Each distribution licensee	Each distribution licensee shall ensure demonstrable generation resource adequacy for such period as specified by the respective SERC
31.1(a)	NLDC/RLDC/SLDC	Operational planning in advance by NLDC, RLDCs and SLDCs within their respective control areas: Monthly and Yearly time horizons in co-ordination with CTU, RPCs or STUs, as applicable.
31.1(b)	NLDC/RLDC/SLDC	Operational planning shall be carried out in advance by NLDC, RLDCs and SLDCs within their respective control areas on Intra-day, Day Ahead, Weekly time horizons.
31.1(c)	NLDC/RLDC	 Procedure and data format by NLDC/RLDC for following activity Operational planning analysis Real-time monitoring, Real-time assessments. Format is available at <u>https://posoco.in/wp-</u>

कार्यसूची:उ.क्षे.वि.स.की प्रचालन समन्वय उप-समिति की 225^{र्वं} बैठक

-		
		<u>content/uploads/2024/03/Final-NLDC-</u> <u>Operating-Procedure_as-submitted-to-CERC-</u> <u>dated-290923.pdf</u>
31.1(d)	SLDC	SLDC may also issue procedures and formats for data collection for the above purposes.
31.2(a)	SLDC	Each SLDC shall carry out demand estimation (active & reactive) as part of operational planning after duly factoring in the demand estimation done by STU as part of resource adequacy planning referred to in Chapter 2 of these regulations.
31.2(b)	SLDC	Each SLDC shall develop methodology for daily, weekly, monthly, yearly demand estimation in MW and MWh for operational analysis as well as resource adequacy purposes
31.2(c)	SLDC	The demand estimation by each SLDC shall be done on day ahead basis with time block wise granularity for the daily operation and scheduling . Revision in real-time demand estimate by SLDC if major change is observed and sharing with RLDC
31.2(d)	SLDC	Each SLDC shall submit node-wise morning peak, evening peak, day shoulder and night off-peak estimated demand in MW and MVA on a monthly and quarterly basis for the nodes 110 kV and above
31.2(e)	SLDC	SLDC shall also estimate peak and off-peak demand (active as well as reactive power) on a weekly and monthly basis for load - generation balance planning as well as for operational planning analysis
31.2(f)	ISTS connected bulk consumers or distribution licensees	The entities such as bulk consumers or distribution licensees that are directly connected to ISTS shall estimate and furnish such a demand estimate to the concerned RLDC
31.2(g)	RLDC/NLDC	Based on the demand estimate furnished by the SLDCs and other entities directly connected to ISTS, each RLDC shall prepare the regional demand estimate and submit it to the NLDC. NLDC, based on regional demand estimates furnished by RLDCs, shall prepare national demand estimate
31.2(h)	SLDC	Submission of demand estimate data by SLDCs or other entities directly connected to ISTS, as applicable, to the respective RLDC and RPC as per below timeline : - Daily: 10:00 hrs of previous day - Weekly: First workinh day of previus week - Monhtly: Fifth day of previous month - Yearly: 30th September of the previous year
31.2(i)	SLDC/RLDC/NLDC	Compute forecasting error for intra-day, dayahead, weekly, monthly and yearly forecasts and analyse the same in order to

कार्यसूची: उ.क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225 ^क बैठक

		reduce forecasting error in the future. The computed forecasting errors shall be made available by SLDCs, RLDCs and NLDC on their respective websites.
31.3(a)	SLDC	The generation estimation by each SLDC shall be done on day ahead basis with time block wise granularity for the daily operation and scheduling . Revision in real-time generation estimate by SLDC if major change is observed and sharing with RLDC
31.3(b)	RLDC	RLDC shall forecast generation from wind, solar, ESS and Renewable Energy hybrid generating stations that are regional entities and SLDC shall forecast generation from such sources that are intra-state entities, for different time horizons as referred to in clause (1) of Regulation 31 of these regulations for the purpose of operational planning
31.4(a)	SLDC	SLDCs estimate and ensure the adequacy of resources, identify generation reserves, demand response capacity and generation flexibility requirements with due regard to the resource adequacy framework as specified under Chapter 2 of these regulations
31.4(b)	SLDC	Furnishing time block-wise information for the following day in SLDC respect of all intra-state entities to the concerned RLDC who shall validate the adequacy of resources with due regard to the following: (i) Demand forecast aggregated for the control area; (ii) Renewable energy generation forecast for the control area; (iii) Injection schedule for intra-State entity generating station; (iv) Requisition from regional entity generating stations (v) Secondary and planned procurement through Tertiary reserve requirement; (vi) Planned procurement of power through other bilateral or collective transactions, if any.
33.1	NLDC, RLDC, SLDC & (RPC: Monthly & Yearly)	Based on the operational planning analysis data, operational planning study shall be carried out by various agencies for time horizons such as Real time, Intra Day , Weekly , Monthly & Yearly
33.2	SLDC, RLDCs and NLDC	SLDCs, RLDCs and NLDC shall utilize network estimation tool integrated in their EMS and SCADA systems for the real time operational planning study.
33.3	SLDC	SLDCs shall perform day-ahead, weekly, monthly and yearly operational studies for the

कार्यसूची: उ. क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225 ^{वी} बैठक

		 concerned State for: (a) assessment and declaration of total transfer capability (TTC) and available transfer capability (ATC) for the import or export of electricity by the State. TTC and ATC shall be revised from time to time based on the commissioning of new elements and other grid conditions and shall be published on SLDC website with all the assumptions and limiting constraints; (b) planned outage assessment; (c) special scenario assessment; (d) system protection scheme assessment;
		(e) natural disaster assessment; and (f) any other study relevant in operational scenario.
33.4	RLDCs and NLDC	 RLDCs and NLDC shall perform day-ahead, weekly, monthly and yearly operational studies for: (a) assessment of TTC and ATC at interregional, intra-regional, and inter-state levels; (b) planned outage assessment; (c) special scenario assessment; (d) system protection scheme assessment; (e) natural disaster assessment; and (f) any other study relevant to operational scenarios
33.5	RLDCs	RLDC shall assess intra-regional and inter- state level TTC and ATC and submit them to NLDC. NLDC shall declare TTC and ATC for import or export of electricity between regions including simultaneous import or export capability for a region, and crossborder interconnections 11 (Eleven) months in advance for each month on a rolling basis.
33.6	RLDCs	Operational planning study shall be done to assess whether the planned operations shall result in deviations from any of the system operational limits defined under these regulations and applicable CEA Standards. The deviations, if any, shall be reviewed in the monthly operational meeting of RPC and significant deviations shall be monitored by RPC for early resolution.
33.7	NLDC, RLDCs, RPCs and SLDCs	NLDC, RLDCs, RPCs and SLDCs shall maintain records of the completed operational planning study, including date specific power flow study results, the operational plan and minutes of meetings on operational study.
33.8	NLDC, RLDCs, RPCs and SLDCs	NLDC, RLDCs, RPCs and SLDCs shall have operating plans to address potential deviations from system operational limit identified as a result of the operational planning study.
33.9	SLDCs	Each SLDC shall undertake a study on the

कार्यसूची:उ.क्षे.वि.स.की प्रचालन समन्वय उप-समिति की 225^{र्थ} बैठक

		impact of new elements to be commissioned in the intra-state system in the next six (6) months on the TTC and ATC for the State and share the results of the studies with PLDC
33.10	RLDCs	Each RLDC shall undertake a study on the impact of new elements to be commissioned in the next six (6) months in (a) the ISTS of the region and (b) the intrastate system on the inter-state system and share the results of the studies with NLDC
33.11	NLDC	NLDC shall undertake study on the impact of new elements to be commissioned in the next six (6) months in (a) inter-regional system, (b) cross-border link and (c) intraregional system on the inter-regional system.
33.12	NLDC, RLDCs and SLDCs	NLDC, RLDCs and SLDCs shall compare the results of the studies of the impact of new elements on the system and transfer capability addition with those of the interconnection and planning studies by CTU and STUs
33.13	concerned user or SLDC or RLDC or NLDC	Defense mechanisms like system protection scheme, load-rejection scheme, generation run-back, islanding scheme or any other scheme for system security shall be proposed by the concerned user or SLDC or RLDC or NLDC and shall be deployed as finalized by the respective RPC

All SLDCs need to take actions at their end for timely submission of demand forecasting and resource adequacy data on day-ahead, week-ahead, month ahead and year ahead basis. It is also requested to share actions being taken at your end to ensure compliance of above listed clauses of IEGC 2023.

Members may please discuss.

B.3. Critical operation of Rajasthan Grid during upcoming winter season:

Issues related to grid operation in Rajasthan state control area have been highlighted from NRLDC side in last several OCC/TCC/NRPC meetings. It is to be noted that such issues get aggravated during winter months when agricultural demand in state is on the higher side. Several issues were encountered in Rajasthan control area during last winter season. Issues were discussed in detail in 224 OCC meeting held on 18.10.2024 and separate meeting organised on 19.10.2024. Some of the actions that were agreed are listed below:

1. SLDC to take up the matter with DISCOMs for shifting of non-essential demand being provided in day-time till transmission network capacity augmentation takes place

- 2. Additional ICT at Hindaun 400 KV to be commissioned in December 2024. Voltage will improve but not much considering voltages are reaching critical low of approx. 300 KV.
- 3. As Dholpur Gas plant has also been run in the recent past and significant improvement in Voltages and grid parameters have been observed, RVUNL to ensure the running of Dholpur units as ultimate solution in present condition.
- 4. RE plants installed in state control area should also provide MVAR support to RE plants as per the CEA standards as being implemented in ISGS RE plants.
- 5. For safely meeting 18000 MW load of Rajasthan with voltage in IEGC band, 4000 MVAR support additionally is required. After installing 2500 MVAR of capacitor banks in the study files the base case is converging with voltages at low of 360 KV at 400 KV sub-stations being observed. The base cases were simulated using the real time data. Hence, there was urgent requirement of installation of capacitor banks to prevent system collapse.
- 6. DISCOMs are requested to approach MoP with complete proposal for installation of Capacitor banks through RDSS fund. It was also stated that the detailed proposal was already made for all the 04 power companies of Rajasthan when funding through PSDF fund was envisaged earlier.
- 7. It was again reiterated that low voltages in Rajasthan network was a major area of concern it has to be flagged at the highest level. If PSDF/RDSS fund is not available, funding through other routes/schemes to be taken up for installation of Capacitor banks.
- 8. Expediting capacity augmentation at substations and coordinate with PGCIL/CTU to ensure N-1 compliance to prevent major grid disturbances.

Location wise constraints presented by NRLDC representative and RRVPNL Comments is summarised as below:

				C
Name of Substation	MVA Capacity	Total Loading (MW) (variations throughout day	SPS Status as available with NRLDC	RRVPNL comment in the meeting
		during Dec'23- Jan'24)		
Bhiwadi(PG)	3*315=945	300-700	Not implemented	
Neemrana(PG)	315+500=815	200-450	Not implemented	
Bassi(PG)	2*315+500=1130	300-1000	Not implemented	
Sikar(PG)	2*315+500=1130	150-750	Not implemented	
Jaipur South(PG)	2*500=1000	150-650	Not implemented	
Kankroli(PG)	3*315=945	250-650	Not implemented	
Kotputli(PG)	2*315=630	150-500	Not implemented	
Hindaun (RVPN)	2*315 =630	250-550	Implemented	Additional ICT to be commissioned by Nov'24
Chittorgarh (RVPN)	3*315 =945	200-700	Implemented	SPS is under revision. 4th ICT is proposed
Ajmer (RVPN)	2*315 =630	200-600	Implemented	Additional 500 MVA ICT to be
Rikaper (RVPN)	2*315 -630	100-550	Implemented	
Jodhpur (RVPN)	2*315=630	200-500	Implemented	3rd ICT by 12.09.2025
Heerapura(RVPN)	3*250+315=1065	300-900	Not implemented	SPS to be proposed. Additional ICT is proposed.
Bhilwara (RVPN)	1*500+1*315 =815	300-550	Under Implementation	SPS implemented, additional ICT proposed
Ratangarh(RVPN)	3*315=945	300-750	Implemented	4th ICT proposed
Deedwana(RVPN)	2*315=630	150-500	Not implemented	Under study presently no SPS proposed
Suratgarh(RVPN)	2*315=630	100-500	Implemented	Space constraint

CTUIL/RRVPNL is requested to provide update regarding ICT capacity augmentation at 400/220kV POWERGRID substations:

- (i) 400/220kV Neemrana
- (ii) 400/220kV Sikar
- (iii) 400/220kV Jaipur South
- (iv) 400/220kV Kotputli

It is to be noted that new 500MVA ICT capacity augmentation has already been approved for 400/220kV Bhiwadi, 400/220kV Bassi and 400/220kV Kankroli substations and under implementation.

Rajasthan SLDC and RRVPNL(STU) are requested to provide update on all the above points.

B.4. Mock testing of islanding scheme and simulation studies

Following four islanding schemes are operational in the Northern Region: NAPP Islanding Scheme (Uttar Pradesh), RAPP Islanding Scheme (Rajasthan), Bawana Islanding Scheme (Delhi), and Pathankot-RSD Islanding Scheme (Punjab). As per the SOP for mock islanding schemes approved in the recently concluded OCC 223, SLDCs are requested to prepare and share their plans for conducting mock testing of islanding schemes in their control areas.

None of the four utilities have yet created a SCADA network map for their island areas. However, Uttar Pradesh and Rajasthan have developed SCADA displays with partial island summaries, although telemetry issues still need resolution.

		13	3.9.24	11:3:17			AJAL JI	,,,,,,,	13.9.24	11:8:49		
NSTANTAN	IEOUS FREQ	50.00	6 HZ	ISLANDING	S FREQ. 50.06 HZ		NTANEOUS FRE	Q. 5	0.04 HZ	ISLANDING FREQ. 50.04 HZ		
AME OF REDER	1040	STATUS S (Aprident) A	ARUS Mater Aprilia And	RAPP-A GENER	ration 170	NAC	OF FEEDER	STATUS High Lines	1-OPERATIVE STATUS 1-OPERATIVE (Ruper Status) 0-BLOOKED URBANIK BLOOKED URBANIK	TOTAL GENERATION	632	
APADERE APARONI BPARONI	73	BLICED DEBITHE DEBITHE	-	RAPP-B GENER Total gener	jation 183 jation 353	AJNEST AJNEST AJNEST	AAIMER -313 Kooppa 368 Kaimean 368	BLOOED BLOOED BLOOED		EX BUS GENERATION	567	
ernaurs End	14	BJOED	-	EXBUSGENER TOTAL RLOCK	RATION · 374	AWEST AWEST AMEST	HAIMER 70 DHURMANNA 77 IASALMERT +421	BLOOKED BLOOKED OPERATIVE		TOTAL BLOCKED/ISLANDED LOAD	. 0	
HYS-ADDA II Hys-desar Hys-danycte un	61 35	RUCCO RUCCO RUCCO		TOTAL OPERA	TIVE LOAD 0	ADES	ARSALMER (ARCAL) + 30 Bhinnar Dhaursnanna 82	OPERATIVE OPERATIVE BLOCKED		TOTAL OPERATIVE LOAD	196	
EOUS	FREQ.		0.04 I	HZ	ISLANDING F	REQ. TION	50.0	04 HZ 1543 1398		island in their displa also check for load values so that total island load	ays <u>ar</u> missii corre data	
	542	BLOCKED					LOAD	• 0	-	<mark>available.</mark>		
ARH	-221	OPERATIVE	-	-	TOTAL DEOCKER	DIIJEANDEE						
ARH	200 321 654 175 9 128	OPEANVE OPEANVE BLOCKED BLOCKED BLOCKED		NAI	TOTAL OPERATI			· 499				
	500 175 175 175 175 175 175 175 175 175 175	OPEANING OPEANING BOOKID BOOKI	Y (HZ) TATION	NAI L	TOTAL OPERATI TOTAL OPERATI PS ISLANDI OAD DISPLAY 0.06 HZ ELEMENT NA SUF-1 SU	IVE LOAD ING Y 13	.9.24 WHEN ONE MACHINE 5 RUNNING 111.23 9.43 0.02	· 499	1 :17 KG THEN BOTH TH MACHINE ARE UNNING 11.23 9.43 0.02	*		
	FREC	OPEANIN BOOKID BLOOKID	Y (HZ) TATION	NAL L	TOTAL OPERATI TOTAL OPERATI OAD DISPLAY 0.06 HZ ELEMENT NAI SUT-1 63 MVA (CT-1 63 MVA (CT-1 1320V GARIM 1320V GARIM	ING 13 ME	. 9 . 24 WHEN ONE MACHINE 5 RINNING 11.23 9.43 0.02 3.17 -0.00 1.48	11 : LOADIN R	E 1 :17 AG MICHEN BOTH TT AACHINE ARE UINNING 11.23 9.43 0.02 3.17 -0.00	7 Erroneous v	alues	
	729 175 175 175 175 175 175 175 175 175 175	VILLENCY BOOKID BOOKID COP SUBS VINAPP 7 SIMBHO	Y (HZ) TATION	NAI L 50	SUF4 SUF4 SUF4 <td>NE LOAD NG Y 13 ME NIKTESHWAR MILL SHAHAR AI</td> <td>.9.24 WHEN ONE MACHINE 5 RUNNIG 111.23 9.43 0.02 3.17 -0.00 1.48 N/APP N/APP N/APP N/APP</td> <td>11: LOADIN</td> <td>1 :17 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6</td> <td>r Erroneous v</td> <td>alues</td>	NE LOAD NG Y 13 ME NIKTESHWAR MILL SHAHAR AI	.9.24 WHEN ONE MACHINE 5 RUNNIG 111.23 9.43 0.02 3.17 -0.00 1.48 N/APP N/APP N/APP N/APP	11: LOADIN	1 :17 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	r Erroneous v	alues	
	FREC NAME 220K	V NAPP	Y (HZ) TATION DEI	NAL 5	SUF4 ELEMENT NAI SUF4 SUF4	ME MILL SHAHAR AH	.9.24 WHEN ONE MACHINE 5 RUNNIG 111.23 9.43 0.02 3.17 -0.00 1.48 N/APP N/APP N/APP N/APP N/APP N/APP N/APP N/APP	499	1 :17 5 5 5 5 5 5 5 5 5 5 5 5 5	r Erroneous v	alues	
	220K 220K	VINAPP	Y (HZ) TATION DLI P-GENE	ID TAI	TOTAL DESCRATI TOTAL OPERATI PS ISLANDI OAD DISPLAN 0.06 HZ ELEMENT NAI SUT-1 63 MVA ICT-1 63 MVA ICT-1 63 MVA ICT-3 132 EV AMA ICT-3 132 EV AMA ICT-3 132 EV AMA ICT-3 132 EV AMA ICT-3 140 MVA ICT-3 40 MVA ICT-3	IST	. 9 . 24 WHEN ONE MACHINE 5 RINNING 11.23 9.43 0.02 3.17 -0.00 1.48 N/APP N/APP N/APP N/APP N/APP N/APP N/APP R/APP N/APP R/APP N/APP R/APP R/APP	499	11 :17 5 11 :17 11 :23 9,43 0.02 3.17 -0.00 1.48 6.66 6.66 0.00 9.85 9.23 10.12 104.6 150 280 MW	7 Erroneous v	alues	
	FREC NAME 220K ¹ 220K ¹ 220K ¹	PULIDA PULIDA PULIDA RECEIPTION RECEIPTION RECEIPTION PULIDA PULIDA PULIDA PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION RECEIPTION RECEIPTION RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION PULIDA RECEIPTION RECEIPTION PULIDA RECEIPTION RECEIPTION PULIDA RECEIPTION RECEIPTION PULIDA RECEIPTION RECEIPTION PULIDA RECEIPTION PULI	Y (HZ) TATION DLI	NAI L 50	TOTAL DESCRATI TOTAL OPERATI PS ISLANDO OAD DISPLAY 0.06 HZ ELEMENT NAI 0.06 HZ ELEMENT NAI 0.06 HZ ELEMENT NAI 0.06 HZ 0.06 HZ 0.06 HZ 0.06 HZ 0.06 HZ 0.06 HZ 0.06 HZ 0.06 HZ 0.07 HZ	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.9.24 WHEN ONE MACHINE 5 RUNNING 11.23 9.43 0.02 3.17 -0.00 1.48 N/APP N/APP N/APP N/APP N/APP 37.99 70.90 MW RATIO(5) 26	· 499	1 :17 5 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	r Erroneous v	alues	
	FREC NAME 220K1 220K1 220K1	PULIDA PULIDA PULIDA BOOK BOOK BOOK PULIDA PULIDA V NAPP V NAPP V NAPP V SINBHO V NAPP	Y (HZ) TATION DLI	IL 5	SUTA CONCENT PS ISLAND OAD DISPLAT OAD DISPLAT ELEMENT NAL SUTA SUTA	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	.9.24 WHEN ONE MACHINE 5 RUNNING 111.23 9.43 0.02 3.17 -0.00 1.48 N/APP N/A	· 499	1 :17 5 5 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	roneous v	alues	

During 224 OCC meeting, NRLDC representative mentioned that only the NAPS Islanding Scheme of UP has incorporated the G/L ratio in its SCADA display according to the shared format. UP representative added that due to a recent fire incident at Khurja S/S, the telemetry from the 220kV Khurja S/S is currently unavailable, and they promised to share an update on the restoration of telemetry from Khurja as soon as possible.

NRLDC representative also requested that all concerned utilities provide updated islanding base cases for different load-generation balance scenarios (Summer: Peak/Off-peak and Winter: Peak/Off-peak) along with dynamic data of the generators in the island for conducting dynamic simulation studies. He reiterated that the Islanding SCADA display should be made available at NRLDC as per the format shared in previous OCC meetings.

UP, Rajasthan, Punjab and Delhi SLDC are requested to provide update.

B.5. Winter preparedness 2024-25

Winter in Northern region is likely to start from mid of October till February end, and the challenges faced during these months are well known to all the utilities. During winter,

demand of NR states except Rajasthan and hilly states is on the lower side. With decreasing temperatures and festivals, onset of winter also brings some severe challenges to NR grid operators. Moreover, there is possibility for severe winter during this season due to the impact of LA-NINA. IMD in their press release dated 05.09.2024, Extended range Forecast for next two weeks (5- 18 Sept, 2024) mentioned that "*The latest MMCFS forecast indicates higher likelihood of La Niña conditions are likely to develop during end of monsoon season*". Accordingly, number of measures were discussed and implemented for better grid operation during winter months:

Based on the detailed discussion held in last OCC meeting, following actions were suggested:

- Transmission utilities to prepare plan for measures to be taken by them for carrying out pre-winter maintenance activities. It was agreed that same may be shared by utilities via mail with NRPC/NRLDC before next OCC meeting. Plan has been received from POWERGRID NR-2.
- To carry out tap change exercise at 220kV and below voltage level. NRLDC will also be studying voltage profile of 400/220kV substations in NR for the month of Oct 2024. Accordingly, tap changes at following 400/220kV substations are being proposed based on present tap positions, study at NRLDC end and previous year experiences:
 - (i) 400/220kV Bhiwani PG) (increase by 2 steps)
 - (ii) 400/220kV Sonepat PG) (increase by 2 steps)
 - (iii) 400/220kV Dehar (BBMB) (increase by 2 steps)
 - (iv) 400/220kV Daultabad (increase by 2 steps)
 - (v) 400/220kV Bamnauli (increase by 2 steps)
 - (vi) 400/220kV Allahabad(PG) (reduction by 2 steps)
 - (vii) 400/220kV Amritsar(PG) (reduction by 1 step)
 - (viii) 400/220kV Jalandhar(PG) (reduction by 1 step)
 - (ix) 400/220kV Kaithal(PG) (reduction by 1 step)
- With low temperature across Northern region and with high humidity in the air, fog starts to appear across the Northern region. This problem is generally most severe from 15Dec- 15Feb period & more prominent in areas having high pollution. During this time, additional care need to be taken by system operator as many multiple element tripping events have been reported in the past especially in Punjab, Rajasthan, Haryana and Eastern UP. Such tripping are more severe if the lines are tripping from generation complex.

To furnish details of Progress on cleaning and replacement of porcelain insulator with polymer insulator. NRLDC has already requested vide emails dated 26.09.2024, 30.09.2024 & 07.11.2024, all transmission utilities to furnish the utility-wise latest status of the replacement of porcelain insulators with polymer insulators so that crucial lines for which such works are pending may be identified & prioritized. List is also attached as **Annexure-B.II** of agenda.

List of line that reported tripping on 4 or more instances last year during Dec-Jan months during fog-prone time of 21:00-10:00hrs along with their insulator status is shown below:

S. No.	Line Name	Tripping instances	Owner	Insulator status
1	220 KV RAPS_A(NP)-Sakatpura(RS) Ckt-2	12	RRVPNL	N/A
2	220 KV RAPS_B(NP)-Sakatpura(RS) Ckt-1	10	RRVPNL	N/A
3	220 KV RAPS_A(NP)-Sakatpura(RS) Ckt-1	9	RRVPNL	N/A
4	400 KV Agra-Unnao Ckt-1	8	UPPTCL	Partial polymer (25%)
5	220 KV Debari(RS)-RAPS_A(NP) Ckt-1	6	RRVPNL	N/A
6	220 KV Nara(UP)-Roorkee(UK) Ckt-1	5	UPPTCL	N/A
7	220 KV Ratangarh(RS)-Sikar(PG) Ckt-1	5	POWERGRID	N/A
8	220 KV Panipat(BB)-Chajpur(HV) Ckt-2	5	HVPNL	N/A
9	400 KV Muktsar-Makhu Ckt-2	5	PSTCL	Porcelain
10	400 KV Suratgarh(RVUN)-Ratangarh(RS) Ckt-1	4	RRVPNL	Porcelain
11	220 KV Shahjahanpur(PG)-Lakhimpur(Gola) Ckt-2	4	UPPTCL	N/A
12	220 KV Ratangarh(RS)-Sikar(PG) Ckt-2	4	POWERGRID	N/A
13	400 KV Shree Cement(SCL)-Kota(PG) Ckt-1	4	POWERGRID	Polymer
14	400 KV Muradnagar_2-Mathura Ckt-1	4	UPPTCL	N/A

• To ensure that all over flux setting of transformers and overvoltage settings of transmission lines are as per approved protection philosophy of NRPC.

On number of occasions, it is seen that utilities are correcting their protection settings after tripping events. It is important all the protection settings are as approved by NRPC. Utilities are requested to confirm the same from field and ensure that protection settings are only as approved by NRPC.

• OCC expressed concern on the lack of progress of DTL reactors and asked them to expedite their works. Status of reactors under commissioning in Delhi control area in Northern region as per discussion in 223 OCC MoM is shown below:

Substatio n	Reactor	Status as per 222 OCC MoM
Mundka	1x125 MVAr at 400 kV & 1x25 MVAr at 220 kV	Bay work completed on 25.03.2023. Reactor part tender is dropped and at present same is under revision.
Bamnauli	2x25 MVAr at 220 kV	Bay work completed on 25.03.2023. Reactor part tender is dropped and at present same is under revision.
Electric Lane	1x50 MVAr at 220 kV	Under Re-tendering due to Single Bid
Indraprastha	2x25 MVAr at 220 kV	Bay work completed on 07.11.2023. Reactor part tender is dropped and at present same is under revision.

NRLDC representative also presented the voltage profile of these substations for last winter season in the meeting and emphasized on urgent requirement of these reactors. It is requested to expedite the commissioning of these reactors apart from the measures listed above. • Some of the generators have already been tested (Tehri, Chamera, Pong, RSD etc.) and shall be available for condenser mode of operation as and when required. States/SLDCs are also advised to explore synchronous condenser operation of Hydro & Gas units in their state control area. It is requested that all other utilities may explore possibility of running units as synchronous condenser. Since reactive energy charges are now payable to generators also therefore, it would also be providing them financial support in case units are supporting through synchronous condenser mode of operation.

During 224 OCC meeting,

NHPC representative agreed to make Chamera-II available to operate as a synchronous condenser this winter season, as needed for grid stability. He noted that the unit had not been run as a synchronous condenser since 2018 due to maintenance issues, which have now been addressed.

Punjab representative informed the forum that currently only one machine at RSD can operate as a synchronous condenser. For the other three machines, they have engaged ABB to install additional equipment to enable synchronous condenser functionality.

The BBMB representative mentioned that they would provide an update on their synchronous condenser capabilities to the forum shortly.

• Utilities to submit feedback on NRLDC reactive power document including for line reactors which can be used as bus reactors as per requirement.

Ramping support requirement from states during winter season:

Off-peak to peak demand ratio of NR falls to around 0.5 to 0.6 during winter, morning and evening load ramp is quite steep together with limited hydro resources etc. This increases the importance of Portfolio management as per load forecast especially during high ramp up and ramp down periods.

Generation planning becomes very important especially with the in-surge of renewable integration with the grid, generation resources should be optimally planned, taking care to maintain adequate reserves.

Hydro generation resource which becomes all the more important due to ramping requirement; it starts depleting due to limited inflow of water (most of the hydro stations of NR are snow fed). With increasing solar generation during the day-time, the ramping requirements during evening hours are rising and posing serious challenge to the system operators to maintain frequency within the band.

Demand pattern for last 3 days (05.11.2024, 06.11.2024, 07.11.2024) is shown below:

As can be seen there is high ramp in demand during 0400-0800 hrs and also during 1700-1830 hrs. It is requested that all intrastate generating resources are also scheduled optimally to support this ramp in demand.

Further, from demand pattern of Haryana for last few days it is seen that there is sudden decline in demand at 06:00hrs. Haryana SLDC is requested to provide the reasons for the same.

Further from the demand pattern of UP state it is seen that there is sharp rise in demand from 1700-1830 hrs. This rise of 4000MW in demand is observed when the solar generation in the grid is declining. This is leading to extra pressure on the grid resources to meet this ramp in demand.

Utilities are requested to prepare plan for measures to be taken by them for carrying out pre-winter maintenance activities. Same may be shared by utilities via mail with NRPC/NRLDC before OCC meeting. Members may please discuss.

B.6. Reactive power performance of generators

During winter season, demand of Northern region is low and high voltages are a common phenomenon predominantly in Punjab, Haryana and Delhi area. Even after several actions being taken by control centers, it is seen that there is persistent high voltage in Northern region. The reactive power absorption by generators becomes an important resource that helps in managing high voltages in the grid. However, even after continuous follow up in OCC meetings, it is seen that MVAR data telemetry is poor/ inaccurate from most of the generating stations. For some of the generators it is seen that there is inadequate reactive power absorption based on their capability curve especially during night hours. The performance of generators in absorption of reactive power for last 7 days (01 Nov 2024 - 07 Nov 2024) is shown below:

S.No.	Station	Unit No.	Capacity	Geographica I location	MVAR capacity as per capability curve (on LV side)	MVAR performanc e (-) Absorption (+) Generation (HV side data)	Voltage absorption above (in KV)
1	Dadri	1	490		-147 to 294	-150 to 110	Data franza
	NTPC	2	490	Delili-NCR	-147 to 294	-150 to 110	Dala neeze
		1	200		-60 to 120	0 to 20	404
		2	200		-60 to 120	0 to 20	402
		3	200		-60 to 120	-5 to 20	402
2	Singrauli	4	200		-60 to 120	-25 to 0	394
	NTPC	5	200	UP	-60 to 120	-10 to 5	398
		6	500		-150 to 300	5 to 50	404
		7	500		-150 to	10 to 40	402

कार्यसूची: उ. क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225 ^{वीं} बैठक

					300		
3	Rihand NTPC	1	500	UP	-150 to	-50 to 0	394
					300		557
		2	500		-150 to 300	-20 to 20	396
		3	500		-150 to 300	-50 to 0	394
		4	500		-150 to 300	-60 to -10	394
4	Kalisindh RS	1	600	Rajasthan	-180 to 360	-	-
		2	600		-180 to 360	-150 to 50	400
5	Anpara C UP	1	600	UP	-180 to 360	-110 to 0	770
		2	600		-180 to 360	-120 to -20	768
6	Talwandi Saboo PB	1	660	Punjab	-198 to 396	-200 to 0	410
		2	660		-198 to 396	-200 to 0	410
		3	660		-198 to 396	-	-
7	Kawai RS	1	660	Rajasthan	-198 to 396	-100 to 50	402
		2	660		-198 to 396	-70 to 20	404
8	IGSTPP Jhajjar	1	500	Haryana	-150 to 300	-80 to 50	410
		2	500		-150 to 300	-90 to 150	412
		3	500		-150 to 300	-110 to 50	409
9	Rajpura (NPL)	1	700	Punjab	-210 to 420	-250 to 0	405
		2	700		-210 to 420	-250 to 0	402
10	MGTPS	1	660	Haryana	-198 to 396	-120 to 120	412
		2	660		-198 to 396	-130 to 100	408
11	Bawana	1	216	Delhi-NCR	-65 to 130	-70 to 10	406
		2	216		-65 to 130	-	-
		3	216		-65 to 130	-	-
		4	216		-65 to 130	-	-
		5	253		-65 to 130	-50 to 50	408
		6	253		-65 to 130	-	-
12	Bara PPGCL	1	660	UP	-198 to	0 to 80	775
		2	660		-198 to 396	0 to 100	775
		3	660		-198 to 396	-70 to 20	765

कार्यसूची:उ.क्षे.वि.स.की प्रचालन समन्वय उप-समिति की 225^{र्वं} बैठक
	Lalitpur TPS	1	1 660		-198 to 396	-50 to 50	765
13		2	660	UP	-198 to 396	-50 to 50	765
		3	660		-198 to 396	-100 to 50	760
14	Anpara D UP	1	500	UP	-150 to 300	-200 to -100	-
14		2	500		-150 to 300	-150 to -100	-
		1	250		-75 to 150	-40 to 40	410
15	Chhabra	2	250	Dojocthon	-75 to 150	-70 to 20	408
12	TPS	3	250	Rajasinan	-75 to 150	-60 to 40	410
		4	250		-75 to 150	-	-
		5	660		-198 to 396	-50 to 150	412
		6	660		-198 to 396	-50 to 150	410

All generating stations are requested to resolve any issues related to telemetry and make sure that MVAr absorption is as per grid requirement and capability curve of machine.

Since with IEGC 2023 implementation, reactive energy performance also has financial impact, it is desirable that all generating stations continue to support grid voltages by having reactive power performance as per their capability curve and grid requirement.

Some of the generating units such IGSTPP Jhajjar, MGTPS Jhajjar, Bara need to explore possibility of further MVAR absorption. Further, intrastate generators in Rajasthan control area may be asked to support through adequate reactive power generation during day-time when Rajasthan grid experiences low voltage.

Following was discussed in 224 OCC meeting:

Singrauli representative informed that they would look into the issue of Unit 4 and Unit 5.

IGSTPP Jhajjar representative informed the forum that their machine is capable of absorbing reactive power as per its capability curve. However, they have manually set a voltage threshold of 408kV for Unit-3, and they plan to adjust the voltage threshold of 412kV in Unit-2 by making suitable tap changes to align it with Unit-3.

Regarding Talwandi Sabo, Punjab representative stated that they have consulted PSPCL, which confirmed that the settings were configured as per the OEM's specifications and have not been adjusted since. Punjab representative requested guidance on any standard settings or documents that could be shared with the OEM for tuning the system.

The forum advised that the settings could be aligned with the unit's capability curve. Subsequently, Punjab SLDC representative proposed inviting a PSPCL representative to the upcoming Northern Region protection meeting to resolve the issue.

Representative from Bara also agreed to rectify the issue and same has been taken up with their protection team.

CGM(NRLDC) informed all such plants to take suitable actions at their end so that the reactive power performance of generators aligns with the requirement of the grid.

Following are few observations based on data of 01Nov-07Nov 2024 analysed at NRLDC end:

- Some of the machines at NTPC Singrauli are generating MVAr whereas some are absorbing MVAr
- Data of Dadri Stage-II was not available for analysis.
- IGSTPP Jhajjar performance needs improvement.
- Performance of Unit-2 at MGTPS Jhajjar was better than for Unit-1
- Performance of Unit03 at Bara is as required, whereas Unit-1 and Unit-2 performance needs improvement/ data check.
- Rajasthan SLDC to monitor performance of intrastate thermal units to obtain better voltage support during low voltage conditions in the grid.

All generating stations are requested to resolve any issues related to telemetry and make sure that MVAr absorption is as per grid requirement and capability curve of machine. Generators may also set their Vsch (voltage set point) such that units are absorbing MVAR as per their capability and grid requirement with intimation to RLDC/SLDC.

B.7. Sharing of ATC/TTC assessment and basecase with NRLDC

All NR states except Chandigarh UT are sharing basecase and ATC/TTC assessment with NRLDC. OCC has advised all states to timely declare TTC/ATC for prospective months and revise the figures as per requirement.

CERC vide their order dated 29.09.2023 has granted approval of "Detailed Procedure for Allocation of Transmission Corridor for Scheduling of General Network Access and Temporary General Network Access under Central Electricity Regulatory Commission (Connectivity and General Network Access to the inter-State Transmission System) Regulations, 2022".

Detailed roles and responsibilities for State Load Dispatch Centers in various timelines of the approved procedure are provided in the table below.

Purpose	S No	Action of Stakeholder	Resp onsibili ty	Submi ssion to	Data/ Informati on Submissi on Time line	
1. Revision 0 TTC/ATC	1(a)	Submission of node wise Load and generation data along with envisaged	SLDC	RLDC	10 th Day of 'M-12' month	
Declarati on for		scenarios for assessment of transfer capability				
Month 'M'		Assessment of TTC/ATC of the import/export capability of the state and intra-state system and				

कार्यसूची: उ.क्षे. वि. स. की प्रचालन समन्वय उप-समिति की 225 ^{वां} बैठक

2. Intercon nection Studies	1(b) 2(a)	sharing of updated network simulation models Declaration of TTC/ATC of the intra- state system by SLDC in consultation with RLDC Submission of node-wise load and generation data & sharing of network simulation models for intra-state elements coming in			26 th Day of 'M-12' month 8 th Day of 'M- 6' month
for elements to be integrate d in the month 'M'	2(b)	the next six months Sharing of inter-connection study results	SLDC	RLDC	21 st Day of 'M-6' month
3. Month Ahead TTC/ATC Declarati on & Base case for Operatio	3(a)	Submission of node wise Load and generation data along with envisaged scenarios for assessment3(a)of transfer capabilityAssessment of TTC/ATC of the intra- state system and sharing of updated network simulation models		RLDC	8 th Day of 'M- 1' month
nal Studies for Month 'M'	3(b)	Declaration of TTC/ATC of the intra- state system in consultation with RLDC	SLDC	RLDC	22 nd Day of 'M-1' month

To encourage participation from SLDCs regarding basecase preparation and ATC/TTC assessment, two workshops have been conducted from Grid-India/NRLDC side. One workshop was conducted 31.08.2023 before the finalization of the procedure and another on 10.01.2024 recently to involve further participation from SLDCs.

Although all SLDCs are now involved in preparation of basecase & ATC/TTC assessment, it is seen that the timelines as per CERC approved procedure are not being followed and number of times basecases are not received from SLDC side.

B.7.1 ATC/TTC assessment sharing 11 months in advance

The procedure mentions that:

"SLDCs in consultation with RLDCs shall declare the import and export TTC, ATC, and TRM of the individual control/bid areas within the region in accordance with Regulation 44 (3) of the Grid Code 2023. RLDCs shall assess the import and export TTC, TRM and ATC for the group of control/bid areas within the region (if required). The computed TTC, TRM and ATC figures shall be published on the website of respective SLDCs and RLDCs, along with the details of the basis of calculations, including assumptions, if any, **at least eleven (11) months in advance**. The specific constraints indicated in the system study shall also be published on the website."

Accordingly, SLDCs are requested to send the PSSE cases for four scenarios for Oct'25 i.e. Afternoon Peak, Solar Peak, Evening Peak & Off-Peak hours as communicated from NRLDC side. It is requested that the basecases as well as ATC/TTC assessments may be shared with NRLDC as per CERC approved procedure. Further, the above exercise needs to be carried out regularly monthly.

It was discussed in last several OCC meetings & all states were requested to share basecase as well as ATC/TTC assessments for M-12 scenarios on monthly basis with NRLDC as per CERC approved procedure. Accordingly, it is requested to submit the basecase as well as ATC/TTC assessments.

B.7.2 Sharing of Data and study results for interconnection studies

As per Regulation 33 of IEGC 2023,

(9) Each SLDC shall undertake a study on the impact of new elements to be commissioned in the intra-state system in the next six (6) months on the TTC and ATC for the State and share the results of the studies with RLDC.

(10) Each RLDC shall undertake a study on the impact of new elements to be commissioned in the next six (6) months in (a) the ISTS of the region and (b) the intra-state system on the inter-state system and share the results of the studies with NLDC.

(11) NLDC shall undertake study on the impact of new elements to be commissioned in the next six (6) months in (a) inter-regional system, (b) cross-border link and (c) intra-regional system on the inter-regional system.

In line with above, utilities are requested to share the list of elements/LGB data/interconnection study results etc as per the approved procedure which are expected to be commissioned within next six months. This needs to be practised as monthly exercise on regular basis.

The agenda was discussed in last several OCC meetings & all utilities were requested to share list of elements/LGB data/interconnection study results etc as per the approved procedure on monthly basis.

B.7.3 TTC/ATC of state control areas for monsoon 2024 (M-1)

As discussed in previous OCC meetings, most of the NR states except Ladakh and Chandigarh U/Ts are sharing basecase and ATC/TTC assessment with NRLDC.

Based on simulation studies and discussions between SLDCs and NRLDC, ATC/TTC limits for NR states for the month of Dec'2024 are attached as **Annexure-B.III**.

OCC has advised all states to timely declare TTC/ATC for prospective months and revise the figures as per requirement.

The agenda was also discussed in last several OCC meetings wherein all states agreed to send the data as well as PSSE basecases on time for all three (M-1, M-6, M-11) scenarios.

In 224 OCC meeting,

• NRLDC representative stated that the agenda was also discussed in last several OCC meeting wherein all states agreed to send the data as well as PSSE basecases on time for all three (M-1, M-6, M-11) scenarios. CGM

NRLDC asked states to get help from NRLDC in case of any difficulty and emphasized on the need for regularity in sharing the data.

- NRLDC representative presented the status of basecase and data sharing by NR states for the last six months.
- It was mentioned that UP, Punjab, Rajasthan and J&K are regularly sharing basecase as well ATC/TTC assessment with NRLDC. Haryana, Uttarakhand and HP are sharing data, but on some occasions it is getting missed. It was requested that all SLDCs may timely share the same.
- All SLDCs agreed to share basecase as well as ATC/TTC assessment as per CERC approved procedure.

Still, it is being observed that response from some SLDCs is not as per desired levels.

All SLDCs are requested to provide update.

Members may please discuss.

Status of action taken on decision of 224^{th} OCC meeting of NRPC

S.N.	Agenda	Decision of 224 th OCC meeting of	Status of action
		NRPC	taken
1	A.15. N-1	Forum asked BBMB, PSTCL and	BBMB, PSTCL and
	contingency violation	HPPTCL to jointly have a meeting	HPPTCL to update
	in 400/220/33KV	and explore the technical modalities	the status.
	315MVA ICT-I at	for implementation of SPS at Dehar	
	BBMB Dehar (Agenda	and same may be presented in next	
	by Powergrid NR-2)	OCC meeting	
2	A.16. Regarding installation of CSD in 400KV Kalaamb Wangtoo and 400KV Kalaamb Sorang to control switching surges (Agenda by Powergrid NR-2)	 Forum recommended that CTU to do a study and submit its observations to NRLDC on the following a. Whether the reactor currently installed at the Karcham end could be relocated to either Wangtoo or Sorang, or alternatively, a new reactor could be installed. b. Determine whether to install a reactor at Wangtoo or Sorang, or Sorang, or alternatively, to install a Capacitor Switching Device (CSD) on the 400 kV Wangtoo and 400 kV Wangtoo and 400 kV 	CTU to update the status.
		Wangtoo and 400 kV Sorang lines at Kalaamb substation to manage switching surges.	
3	A.17. Power flow congestion to Delhi Ring Main unit through 400 kV Switchyard at 765/400KV Jhatikra substation (Agenda by Powergrid NR-1)	Forum asked CTU to provide detailed study report in consultation with NRLDC on load congestion relieving measures at Jhatikra S/S including provision for upcoming ICTs at Jhatikra S/S and Narela S/s.	CTU to update the status.

Status of action taken on decision of 224^{th} OCC meeting of NRPC

4	A.21 Requirement of complete 400 kV Bus- 1 &2 shutdown at Mandola & Ballabgarh SS for replacement of damaged sections 400 kV jack buses (Agenda by Powergrid NR-1)	Forum asked DTL and HVPN to submit before OCC meeting how they will manage their load during the complete shutdown of 400 kV Bus-1 and Bus-2 at Mandola and Ballabgarh substation, respectively.	DTL and HVPN to update the status.

Follow up issues from previous OCC meetings

1	Down Stream network by State utilities from ISTS Station	Augmentation of transformation capacity in various existing substations, addition of new substations along with line bays as well as requirement of line bays by STUs for downstream network are under implementation at various locations in Northern Region. Further, 220kV bays have already been commissioned at various substations in NR. For its utilization, downstream 220kV system needs to be commissioned.	List of downstream n Annexure-A.I.I.	networks is enclosed in
2	Progress of installing new	Information regarding installation of new capacitors and repair of defective	Data upto following various states / UTs	months, received from s:
	capacitors and repair	capacitors is to be submitted to NRPC		
	of defective	Secretariat.	© CHANDIGARH	Sep-2019
	capacitors		© DELHI	Ju1-2024
			© HARYANA	Aug-2024
			Ø HP	Sep-2024
			◎ J&K and LADAKH	Not Available
			© PUNJAB	Sep-2024
			© RAJASTHAN	Sep-2024
			O UP	Sep-2024
			© UTTARAKHAND	0ct-2024
			All States/UTs are m	requested to update
			status on monthly ba	asis.
3	Healthiness of defence mechanism: Self-certification	Report of mock exercise for healthiness of UFRs carried out by utilities themselves on guarterly basis is to be	Data upto following various states / UTs	months, received from s:
		submitted to NRPC Secretariat and NRLDC	© CHANDIGARH	Not Available
		All utilities were advised to certify	© DELHI	Sen-2024
		specifically in the report that "All	© HARYANA	Sep=2024
		the UEDs are shocked and found	O HP	Aug-2024
		functional"	© T&K and LADAKH	Not Available
		runctional .	© PUNTAB	Sep-2024
			© RATASTHAN	Tun-2024
			© IIP	Sen=2024
			© UTTARAKHAND	Sep-2024
			© BBMB	Tun-2024
			All States/UTs are r	requested to
			undate status for he	ealthiness of UFRs on
			monthly basis for is	slanding schemes and on
			quartely basis for t	the rest
		In compliance of NPC decision, NR	Status:	
		states/constituents agreed to raise the	© CHANDIGARH	Not Available
		AUFR settings by 0.2 Hz in 47th TCC/49th	© DELHI	Increased
		NRPC meetings.	© HARYANA	Increased
			© HP	Increased
			◎ J&K and LADAKH	Increased
			© PUNJAB	Increased
			© RAJASTHAN	Increased
			O UP	Increased

			© UTTARAKHAND Increased
			© BBMB Increased
4	Status of FGD installation vis-à- vis installation plan at identified TPS	List of FGDs to be installed in NR was finalized in the 36th TCC (special) meeting dt. 14.09.2017. All SLDCs were regularly requested since 144th OCC meeting to take up with the concerned generators where FGD was required to be	Status of the information submission (month) from states / utilities is as under: <pre> HARYANA Jun-2024 PUNJAB Jun-2024 RAJASTHAN Ju1-2024 </pre>
		installed. Further, progress of FGD installation	Image: Organization of the second
		work on monthly basis is monitored in OCC meetings.	FGD status details are enclosed as Annexure - A.I.II. All States/utilities are requested to update status of FGD installation progress on monthly basis.
5	Submission of breakup of Energy Consumption by the states	All states/UTs are requested to submit the requisite data as per the billed data information in the format given as under:	Status of the information submission (month) from states / utilities is as under:
			State / UT Upto
		Consumption Consumption Consumption Consumption Traction Miscellaneous	© CHANDIGARH Not Submitted
		Category→ by Domestic Commercial Agricultural by Industrial supply inductanteeds Loads Loads load / Others	© HARYANA Sep-24
			© HP Aug-24
		<month></month>	◎ J&K and LADAKH JPDCL- Mar'24
			© PINTAR Aug-24
			\bigcirc RATASTHAN Iu1-24
			© UP Jun-24
			© UTTARAKHAND Jun-24
			Chandigarh is requested to submit the requisite data w.e.f. April 2018 as per the billed data information in the given format
6	Information about variable charges of all generating units in the Region	The variable charges detail for different generating units are available on the MERIT Order Portal.	All states/UTs are requested to submit daily data on MERIT Order Portal timely.
7	Status of Automatic Demand Management	The status of ADMS implementation in NR, which is mandated in clause 5.4.2 (d) of	The status of ADMS implementation in NR is enclosed in Annexure-A I II
	System in NR states/UT's	IEGC by SLDC/SEB/DISCOMs is presented in the following table:	O DELHI Scheme Implemented but operated in manual mode.
			© HARYANA Scheme not implemented
			© HP Scheme not implemented
			© PUNJAB Scheme not implemented
			© RAJASTHAN Under implementation.
			© UP Scheme implemented by NPCIL only

© UTTARAKHAND Scheme not implemented				
		0	UTTARAKHAND	Scheme not implemented

8 Reactive compensation at 220 kV/ 400 kV level at 8 substations						
	State / Utility	Substation	Reactor	Status		
·i	DTL	Peeragarhi	1x50 MVAr at 220 kV	1x50 MVAr Reactor at Peeragarhi has been commissioned on dated 18.09.2023		
ii	DTL	Harsh Vihar	2x50 MVAr at 220 kV	2x50 MVAR Reactor at Harsh Vihar has been commissioned on dated 31th March 2023.		
iii	DTL	Mundka	1x125 MVAr at 400 kV & 1x25 MVAr at 220 kV	Bay work completed on 25.03.2023. Reactor part tender is dropped and at present same is under revision.		
iv	DTL	Bamnauli	2x25 MVAr at 220 kV	Bay work completed on 25.03.2023. Reactor part tender is dropped and at present same is under revision.		
V	DTL	Indraprastha	2x25 MVAr at 220 kV	Bay work completed on 07.11.2023. Reactor part tender is dropped and at present same is under revision.		
vi	DTL	Electric Lane	1x50 MVAr at 220 kV	Under Re-tendering due to Single Bid		
vii	PTCUL	Kashipur	1x125 MVAR at 400 kV	SLDC informed that PTCUL has intimated that bid extension has been done till 18.07.2024. In 220th OCC meeting, PTCUL was suggested to seek assistance from Powergrid in		
viii	RAJASTHAN	Jodhpur	1x125 MVAr	Agreement signed on dt. 22.06.2020. Grant of Ist Instalment received on dt.19.02.21 & work order placed on dt. 07.04.2022 to M/s Kanohar Electricals Ltd. Schedule time is 18 months. 01 No. of 125 MVAR reactor is under testing which is expected to done by end of May 2024. Tentaive charging plan is to be intimated by Rajasthan SLDC.		

4 0	own Stroom notwork	av State utilities from ISTS	Station			Annexure-A-I.I
1. D	own Stream network	by State utilities from 1515				
SI. No.	Substation	Downstream network bays	Status of bays	Planned 220 kV system and Implementation status	Revised Target	Remarks
1	400/220kV, 3x315 MVA Samba	Commissioned: 8 Total: 8	Utilized: 6 Unutilized: 2	Network to be planned for 2 bays.	Mar'25	02 No. of bays shall be utilized for LILO-II of 220kV Jatwal-Bishnah Transmission Line, the work of which is delayed due to persisting RoW issues. expected date of completion is Mar 2025 subject to availability of funds and resolving of RoW issues), Updated in 220th OCC by JKPTCL.
2	400/220kV, 2x315 MVA New Wanpoh	Commissioned: 6	Utilized: 2	• 220 kV New Wanpoh - Alusteng D/c Line	Mar'25	02 No. of bays are to be utilized for connecting 220kV New Wanpoh-Alusteng D/c Line. RoW issues persisting; At present new-wampoh-mirbazar 5km and harwan-alstung 16km have been completed, expected date of completion is Mar 2025 subject to availability of funds and resolving of RoW issues), Updated in 214th OCC by JKPTCL.
		Total. O	Unutilized. 4	• 220 kV New Wanpoh - Mattan D/c Line	End of 2024	02 No. of bays are to be utilized for connecting 220kV New Wanpoh-Mattan D/c Line. The funding source for the project is being identified and the project is expected to be completed by ending 2024. Updated in 204th OCC by JKPTCL.
3	400/220kV, 2x315 MVA Amargarh	Commissioned: 6 Total: 6	Utilized: 4 Unutilized: 2	• 220kV D/C line from 400/220kV Kunzar - 220/33kV Sheeri	End of 2024	02 No. of bays are proposed to be utilized for connecting 220/132 kV GSS Loolipora. The funding source for the project is being identified and the project is expected to be completed by ending 2024. Updated in 204th OCC by JKPTCL.
4	400/220kV, 2x500 MVA Kurukshetra (GIS)	Commissioned: 8 Total: 8	Utilized: 6 Unutilized: 2	• 220kV Bhadson (Kurukshetra) – Ramana Ramani D/c line	Mar'25	Under construction.Updated in 222nd OCC by HVPNL
5	400/220 kV, 2x315 MVA Dehradun	Commissioned: 6 Total: 6	Utilized: 2 Unutilized: 4	Network to be planned for 4 bays	-	PTCUL to update the status.
	Shahiahanpur. 2x315	Commissioned: 6	Utilized: 7	• 220 kV D/C Shahajahanpur (PG) - Gola line	Commissioned	Energization date: 26.10.2023 updated by UPPTCL in 215th OCC
6	MVA 400/220 kV	Approved/Under		LILO of Sitapur – Shahjahanpur 220 kV SC	Commissioned	Energization date: 25.02.2022 updated by UPPTCL
7	Hamirpur 400/220 kV Sub-station	Commissioned: 8 Total: 8	Utilized: 4 Unutilized: 4	• 220 kV Hamirpur-Dehan D/c line	Commissioned	HPPTCL has commissioned the Planned 220kV Dehan-Hamirpur TL utilizing 2 No. 220kV Bays.Commisioned date: 09.06.2022. Updated in 198th OCC by HPPTCL
				Network to be planned for 4 bays	-	HPPTCL to update the status.
	01 400/000114	Commissioned: 8 Total: 8	Utilized: 6	• LILO of 220 kV Sikar (220 kV GSS)-Dhod S/c line at Sikar (PG)	Commissioned	LILO of 220 kV S/C Sikar-Dhod line at 400 kV GSS PGCIL, Sikar has been charged on dt. 31.03.2022
8	1x 315 MVA S/s		Unutilized: 2	Network to be planned for 2 bays.	-	Against the 3rd ICT at 400 kV GSS Sikar, only 2 bays were constructed and same has been utilized by RVPN by constructing LILO of 220 kV S/C Sikar – Dhod line as updated by RVPNL in 195th OCC
				• 220 kV D/C line Bhiwani (PG) – Bhiwani (HVPNL) line	Commissioned	Updated in 202nd OCC by HVPNL
9	Bhiwani 400/220kV S/s	Commissioned: 6 Total: 6	Utilized: 2 Unutilized: 4	• 220 kV Bhiwani (PG) - Isherwal (HVPNL) D/c line.	Dec'24	Issue related to ROW as intimated in 218th OCC by HVPNL. Status: Work was stalled since 29.07.2021 due to ROW issues and farmers agitation and further restarted on 9.10.2023 with the help of district administration. Now, work was again stalled since30.11.2023 due to severe ROW issues. Expected to be completed by 31.12.2024. Foundation 209/212. Erection 193/212. Stinging 37.8/50.3 km
				• 220 kV Bhiwani (PG) - Dadhibana (HVPNL) D/c line.	Oct'25	Line work awarded to M/s R S Infra Projects Pvt. Ltd. Noida, Uttar Pardesh on dated 09.03.2024. Work of route plan and route alignment has been started by the firm as intimated in 218th OCC by HVPNL.
10	Jind 400/220kV S/s	Commissioned: 4 Approved:4 Total: 8	Utilized: 4 Unutilized: 0	• LILO of both circuits of 220 kV Jind HVPNL to PTPS D/C line at 400 kV substation PGCIL Khatkar (Jind) with 0.5 sq inch ACSR conductor	Dec'24	Work in progress. Updated in 220th OCC by HVPNL.
	400/220kV	Commissioned: 6	Utilized: 6	• RK Puram – Tughlakabad (UG Cable) 220kV D/c line – March 2023	Commissioned	Updated in 216th OCC by DTL
11	l ughlakabad GIS	Under Implementation: 4	Unutilized: 0	Masjid Mor – Tughlakabad 220kV D/c line.	Commissioned	Updated in 216th OCC by DTL

SI. No.	Substation	Downstream network bays	Status of bays	Planned 220 kV system and Implementation status	Revised Target	Remarks
	400/220kV	Commissioned: 6	Utilized: 2 Unutilized: 2	HPPTCL has planned one no. of 220kV D/c line from Kala Amb 400/220kV S/s to 220/132kV Kala Amb S/s	Commissioned	Energization date: 31.05.2024 updated by HPPTCL in 220th OCC
12	(TBCB)	Total: 6	Under	 HPPTCL has planned one no. of 220kV D/c line from Kala Amb 400/220kV S/s to 220/132kV Giri S/s 	-	Tendering process is yet to be started.Updated in 219th OCC by HPPTCL
				Network to be planned for 2 bays D/C line Kadarpur - Sec-56 Gurugram.	- Not awarded yet	HPPTCL to update the status. Initial proposal of LILO of 220kV Pali-Sector 56 Line and Pali-Sector 52 line was descoped due to forest issue. Proposal to evacuate power from 220kV D/C Pali- Sector 56 line to Sector 56 and 52 with bunching of lines is under consideration. Updated in 218th OCC by HVPNL
13	400/220kV Kadarpur Sub-station	Commissioned: 8 Total: 8	Utilized: 0 Unutilized: 8	• S/C line Kadarpur - Sec-52 Gurugram	Not awarded yet	Initial proposal of LILO of 220kV Pali-Sector 56 Line and Pali-Sector 52 line was descoped due to forest issue. Proposl to evacuate power from 220kV D/C Pali- Sector 56 line to Sector 56 and 52 with bunching of lines is under consideration. Updated in 218th OCC by HVPNL
				• S/C line Kadarpur - Pali	Not awarded yet	Initial proposal of LILO of 220kV Pali-Sector 56 Line and Pali-Sector 52 line was descoped due to forest issue. Proposl to evacuate power from 220kV D/C Pali- Sector 56 line to Sector 56 and 52 with bunching of lines is under consideration. Updated in 218th OCC by HVPNL
				 LILO of both circuits of 220kV D/c Sohna- Rangla Rajpur at Roj Ka Meo line at 400kV Sohna Road 	Dec'24	Updated in 216th OCC by HVPNL
14	14 400/220kV Sohna Road Sub-station	Commissioned: 8 Total: 8	ssioned: 8 Utilized: 4 3 Unutilized: 4	• LILO of both circuits of 220kV D/c Badshahpur-Sec77 line at 400kV Sohna Road	-	The matter is subjudice in Hon'ble Punjab & Haryana High court, Chandigarh Updated in 205th OCC by HVPNL. Status:- Earlier 02 nos 220 kV line bays were to be utilized for the 220 kV GIS S/Stn. Sec-77, Gurugram but due to denotification of land of the 220 kV GIS S/Stn. Sec- 77 the said substation is now going to be dismantled and a new substation is proposed at Sec-75A, Gurugram. Now, these 02 no. 220 kV line bays may be utilized at 220 kV GIS S/Stn Sec-75A, Gurugram.
				• 220kV D/C line from Prithla to Harfali with LILO of one circuit at 220kV Meerpur Kurali	Mar'25	Contract awarded on 08.08.23 to M/s Skipper with completion in March 25.Updated in 218th OCC by
		Commissioned: 8	Utilized: 4	• LILO of both ckt of 220kV D/c Ranga Rajpur – Palwal line	Commissioned	Energization date: 31.12.2021. Updated in 198th OCC by HVPNL
15	400/220kV Prithla Sub-station	Aprroved: 2	Unutilized: 4	• 220kV D/C for Sector78, Faridabad	31.01.2025	Issue related to ROW and Pending crossing approval from Northern Railways and DFCCIL. as intimated in 223rd OCC by HVPNL.
		Total: 10	Under Implementation:2	• Prithla - Sector 89 Faridabad 220kV D/c line	Jul'25	Work awarded to M/s Man Structurals Pvt Ltd. JV M/s Aquarian Enterprises on 09.01.2024. Contractual date: 06.05.2025 and Tentative date of completion :06.05.2025 Route has been approved and further work is in progress.Updated in 218th OCC by HVPNL
		Commissioned: 6	Utilized: 2	• LILO of both circuits of 220kV Samalkha - Mohana line at Sonepat	31.12.2024	Updated in 224th OCC by HVPNL. Status: The stringing work between TL No. 19 & 20, TL No. 22 & 23 and TL No. 22 & 24 is pending for want of necessary consent from the forest department. The case has already been uploaded on Parivesh portal and is currently pending at the O/o AIGF, Forest Dept. Panchkula.
16	400/220kV Sonepat Sub-station	Under Implementation:2	Unutilized: 4	• Sonepat - HSIISC Rai 220kV D/c line	Commissioned	Energization date: 31.05.2024 updated by HVPNL in 220th OCC
		Total: 8	Under Implementation:2	• Sonepat - Kharkhoda Pocket A 220kV D/c line	08.03.2025	Updated in 212th OCC by HVPNL. Status: Work order has been issued to M/s R.S Infra on dated 09.08.2023 by O/o CE/PD&C, Panchkula for construction of line. Both bays are under construction and erection of electrical equipment is under progress. Tetative date of completion of both bays at PGCIL end is end of July 2024.
17	400/220kV Neemrana Sub-station	Commissioned: 6 Total: 6	Utilized: 4 Unutilized: 2	• LILO of Bhiwadi - Neemrana 220kV S/c line at Neemrana (PG)	-	Work is under progres. Stub Setting: 14/2017. Permission for Highway is awaited from concerned department as updated in 218th OCC by RVPNL.
18	400/220kV Kotputli Sub-station	Commissioned: 6 Total: 6	Utilized: 4 Unutilized: 2	• Kotputli - Pathreda 220kV D/c line	-	Date of bid opening has been extended up to 30.04.2024 as updated in 218th OCC by RVPNL.
19	400/220kV Jallandhar Sub-station	Commissioned: 10 Total: 10	Utilized: 8 Unutilized: 2	Network to be planned for 2 bays	Nov'24	LILO of 220 kV BBMB Jalandhar - Butari line at 400 kV PGCIL Jalandhar being planned. Work expected to be completed by May 2024. Updated in 198th OCC by PSTCL. 6 months more are needed due to ROW issues as updated by PSTCL in 220th OCC

SI. No.	Substation	Downstream network bays	Status of bays	Planned 220 kV system and Implementation status	Revised Target	Remarks	
20	400/220kV Roorkee Sub-station	Commissioned: 6 Total: 6	Utilized: 4 Unutilized: 2	• Roorkee (PG)-Pirankaliyar 220kV D/c line	Commissioned	Roorkee (PG)-Pirankaliyar 220kV D/c line commissioned in 2020 as intimated by PTCUL in 197th OCC	
21	400/220kV Lucknow Sub-station	Commissioned: 8 Total: 8	Utilized: 4 Unutilized: 4	Network to be planned for 2 bays	Commissioned	Lucknow -Kanduni, 220 kV D/C line work energized on 05.10.2023. Updated in 212th OCC by UPPTCL. No planning for 2 no. of bays upated by UPPTCL in 196th OCC. The same has been communicated to Powergrid.	
22	400/220kV Gorakhpur Sub-station	Commissioned: 6 Total: 6	Utilized: 4 Unutilized: 2	Network to be planned for 2 bays	Commissioned	Gorakhpur(PG)- Maharajganj, 220 kV D/C line energized on 27.09.2023 updated by UPPTCL in 212th OCC	
23	400/220kV Fatehpur Sub-station	Commissioned: 8 Under Implementation:2 Total: 10	Utilized: 6 Unutilized: 2 Under Implementation:2	Network to be planned for 2 bays	-	UPPTCL intimated that 02 no. of bays under finalization stage. In 201st OCC, UPPTCL intimated that it is finalized that Khaga s/s will be connected (tentative time 1.5 years). No planning for 2 no. of bays updated by UPPTCL in 196th OCC. The same has been communicated to Powergrid.	
24	400/220kV Abdullapur Sub-station	Commissioned: 10 Under Implementation:2 Total: 12	Utilized: 10 Unutilized: 0 Under Implementation:2	• Abdullapur – Rajokheri 220kV D/c line	Commissioned	Ckt-1 commissioned at 16:13hrs on dated 06.08.24 & Ckt-2 commissioned at 20:10 hrs on dated 05.08.24. Updated in 223rd OCC by HVPNL	
		Commissioned: 8	Utilized: 2	• Panchkula – Pinjore 220kV D/c line	Commissioned	Updated in 218th OCC by HVPNL	
	400/220k\/ Pachkula	Under tender:2	Liputilized: 4	• Panchkula – Sector-32 220kV D/c line	Commissioned	220th OCC	
25	Sub-station	Total: 10	Unutilized: 4	• Panchkula – Raiwali 220kV D/c line	Commissioned	Updated in 194th OCC by HVPNL	
		Out of these 10 nos. 220kV	Under Implementation:2	• Panchkula – Sadhaura 220kV D/c line: Sep'23	Mar'25	Updated in 222nd OCC by HVPNL	
26	400/220kV Amritsar	Commissioned:7 Approved in 50th NRPC- 1	Utilized: 6	• Amritsar – Patti 220kV S/c line	31.08.2024	Issue in connectivity agreement with CTU. PSTCL has taken up the issue with CTU and accordingly CTU has been asked by OCC forum to plan a meeting with PSTCL and CEA at the earliest. Updated in 224th OCC by PSTCL.	
20	S/s	Total: 8	Under Implementation:2	 Amritsar – Rashiana 220kV S/c line (2 bays shall be required for above lines. However, 1 unutilized bay shall be used for Patti and requirement of one additional bay approved for Rashiana by NRPC) 	31.08.2024	Issue in connectivity agreement with CTU. PSTCL has taken up the issue with CTU and accordingly CTU has been asked by OCC forum to plan a meeting with PSTCL and CEA at the earliest. Updated in 224th OCC by PSTCL.	
27	400/220kV Bagpat S/s	Commissioned: 8 Total: 8	Utilized:6 Unutilized: 2	• Bagpat - Modipuram 220kV D/c line	Commissioned	Updated in 201st OCC by UPPTCL	
				• LILO of 220 kV Nunamajra- Daultabad S/c line at 400 kV Bahadurgarh PGCIL	Mar'25	Updated in 220th OCC by HVPNL. Status: NIT has been floated vide NIT No. EPC-D-96 dated 15.10.23 to be opened on 22.12.23. • Now, the tender has been dropped and likely to be refloated by 31.07.2024.	
28	400/220kV Bahardurgarh S/s	Commissioned: 4 Approved: 4 Total: 8	V Approved: 4 Utilized:2 garh S/s Total: 8	Utilized:2 Unutilized: 2	• Bahadurgarh - METL 220kV D/c line (Deposit work of M/s METL)	Mar'25	Updated in 220th OCC by HVPNL. Status: • Revised BOQ forwarded from Design wing to contract wing. • Tender has floated vide NIT No. EPC-D-100 dated 04.01.2024 with tender opening date of 26.02.2024. • Tender has been opened on 26.03.24 and 03 nos. bids has been received. The work is likely to be awarded by the 31.07.2024.
				• Bahadurgarh - Kharkhoda Pocket B 220kV D/c line	08.03.2025	Updated in 220th OCC by HVPNL. Status: Contract awarded on 09.08.23 to M/s R S Infra Noida. Work has been started.	
29	400/220kV Jaipur (South) S/s	Commissioned: 4 Total: 4	Utilized:2 Unutilized: 2	• LILO of 220 kV S/C Dausa – Sawai Madhopur line at 400 kV GSS Jaipur South (PG)	06.10.2025	Work order has been issued on 06.10.2023, work under progress as updated by RVPNL in 215th OCC	
				• Sohawal - Barabanki 220kV D/c line	Commissioned	Energization date: 14.04.2018 updated by UPPTCL	
		Commissioned: 8	l Itilized: 8	Sohawal - New Tanda 220kV D/c line	Commissioned	Energization date: 28.05.2019 updated by UPPTCL in 196th OCC	
30	400/220kV Sohawal S/s	Commissioned: 8 Total: 8	Utilized: 8	Network to be planned for 2 bays	Commissioned	Sohawal - Gonda 220kV S/c line (Energization date: 27.04.2020) updated by UPPTCL in 196th OCC Sohawal - Bahraich 220kV S/c line (Energization date: 15.02.2021) updated by UPPTCL in 196th OCC	
31	400/220kV, Kankroli	Commissioned: 6 Total: 6	Utilized: 4 Unutilized: 2	• 220 kV D/C Kankroli(PG) - Nathdwara line	-	Standard bid document has been finalized on 13.08.2024 and bid is under preparation as updated by RVPN in 222nd OCC.	

SI. No.	Substation	Downstream network bays	Status of bays	Planned 220 kV system and Implementation status	Revised Target	Remarks
32	400/220kV, Manesar	Commissioned: 8 Total: 8	Utilized: 4 Unutilized: 4	Network to be planned for 2 bays	-	Status:- 2nos bays are being utilised for 220 kV D/C Panchgaon (PGCIL)-Panchgaon Ckt-I & 220 kV D/C Panchagon (PGCIL)-Panchgaon Ckt-II, charged on dated 05.09.2022 & 20.10.2022 respectively. The 2nos bays may be utilised by HVPNL in future.
33	400/220kV, Saharanpur	Commissioned: 6 Under Implementation:2 Total: 8	Utilized: 6 Unutilized: 0 Under Implementation:2	Network to be planned for 2 bays	Commissioned	Saharanpur(PG)-Devband D/c line (Energization date: 20.04.2023) updated by UPPTCL in 207th OCC
34	400/220kV, Wagoora	Commissioned: 10 Total: 10	Utilized: 6 Unutilized: 4	Network to be planned for 4 bays	ork to be planned for 4 bays - P	
35	400/220kV, Ludhiana	Commissioned: 9 Total: 9	Utilized: 8 Unutilized: 1	Network to be planned for 1 bay	Commissioned	Direct circuit from 220 kV Lalton Kalan to Dhandari Kalan to be diverted to 400 kV PGCIL Ludhiana. Work completed , final agrrement is expected to be signed by May'24. Updated in 218th OCC by PSTCL.
36	400/220kV, Chamba (Chamera Pool)	Commissioned: 3 Under tender:1 Total: 4	Utilized:3 Unutilized: 0 Under tender:1	• Stringing of 2nd ckt of Chamera Pool – Karian 220kV D/c line	Commissioned	Stringing of 2nd Circuit of Chamera Pool-Karian Tansmission line has been completed & terminal bay at 400/220 kV chamera pooling substation (PGCIL) is commissioned on 20.01.2024. Updated in 217th OCC by HPPTCL.
37	400/220kV, Mainpuri	Commissioned: 6 Under Implementation:2 Total: 8	Utilized: 6 Unutilized: 0 Under Implementation:2	Network to be planned for 2 bays	-	• 02 no. of bays under finalization stage updated by UPPTCL in 196th OCC. Mainpuri S/s planned. Land is not finalized, therefore timeline not available as intimated by UPPTCL in 201st OCC.
38	400/220kV, Patiala	Commissioned: 8 Total: 8	Utilized: 6 Unutilized: 2	Network to be planned for 2 bays	May'25	2 Nos. bays for 400 kV PGCIL Patiala - 220 kV Bhadson (D/C) line being planned. Tender is yet to be awarded. Timeline one year communicated by PSTCL in 220th OCC meeting

Annexure-A-I-III

FGD Status

Updated status of FGD related data submission

GGSSTP, Ropar

CHHABRA TPP

KALISINDH TPS

KOTA TPS

NTPC (27.02.2023) **MEJA Stage-I PSPCL (18.06.2024) RIHAND STPS** SINGRAULI STPS GH TPS (LEH.MOH.) **TANDA Stage-I RRVUNL (09.07.2023) TANDA Stage-II CHHABRA SCPP UNCHAHAR TPS UPRVUNL (10.01.2024) ANPARA TPS** HARDUAGANJ TPS SURATGARH SCTPS **OBRA TPS** SURATGARH TPS **PARICHHA TPS**

Updated status of FGD related data submission

Lalitpur Power Gen. Co. Ltd.	Adani Power Ltd. (18.02.2022)
(10.01.2024)	KAWAI TPS
Lalitpur TI	PS Rosa Power Supply Company
Lanco Anpara Power Ltd.	(01.01.2024)
(01.01.2024)	Rosa TPP Phase-I
ANPARA-C TI	PS Prayagraj Power Generation
HGPCL (14.06.2024)	Company Ltd. (05.01.2024)
PANIPAT TPS	Prayagraj TPP
RAJIV GANDHI TPS	APCPL (01.05.2024)
YAMUNA NAGAR TPS	INDIRA GANDHI STPP

Pending submissions

GVK Power Ltd.

GOINDWAL SAHIB

NTPC

DADRI (NCTPP)

Talwandi Sabo Power Ltd.

TALWANDI SABO TPP

L&T Power Development Ltd.

Nabha TPP (Rajpura TPP)

Target Dates for FGD Commissioning (Utility-wise)

Adani Power Ltd.	KAWAI TPS U#1 (Target: 31-12-2024), KAWAI TPS U#2 (Target: 31-12- 2024)
APCPL	INDIRA GANDHI STPP U#2 (Target: 30-09-2023), INDIRA GANDHI STPP U#3 (Target: 30-06-2023)
GVK Power Ltd.	GOINDWAL SAHIB U#1 (Target: 30-04-2020), GOINDWAL SAHIB U#2 (Target: 29-02-2020)
HGPCL	PANIPAT TPS U#6 (Target: 31-12-2026), PANIPAT TPS U#7 (Target: 31-12-2026), PANIPAT TPS U#8 (Target: 31-12-2026), RAJIV GANDHI TPS U#1 (Target: 31-12-2024), RAJIV GANDHI TPS U#2 (Target: 31-12-2024), YAMUNA NAGAR TPS U#1 (Target: 31-12-2024), YAMUNA NAGAR TPS U#2 (Target: 31-12-2024)

DADRI (NCTPP) U#1 (Target: 31-12-2020), DADRI (NCTPP) U#2 (Target: 31-10-2020), DADRI (NCTPP) U#3 (Target: 31-08-2020), DADRI (NCTPP) U#4 (Target: 30-06-2020), DADRI (NCTPP) U#5 (Target: 30-06-2022), DADRI (NCTPP) U#6 (Target: 31-03-2023), RIHAND STPS U#1 (Target: 31-10-2025), RIHAND STPS U#2 (Target: 30-06-2026), RIHAND STPS U#3 (Target: 31-12-2024), RIHAND STPS U#4 (Target: 31-03-2025), RIHAND STPS U#5 (Target: 30-06-2025), RIHAND STPS U#6 (Target: 31-10-2025), SINGRAULI STPS U#1 (Target: 31-12-2024), SINGRAULI STPS U#2 (Target: 31-12-2024), SINGRAULI STPS U#3 (Target: 31-12-2024), SINGRAULI STPS U#4 (Target: 31-12-2024), SINGRAULI STPS U#5 (Target: 31-03-2025), SINGRAULI STPS U#6 (Target: 31-06-2024), SINGRAULI STPS U#7 (Target: 31-03-2024), UNCHAHAR TPS U#1 (Target: 31-12-2023), UNCHAHAR TPS U#2 (Target: 31-12-2023), UNCHAHAR TPS U#3 (Target: 30-09-2023), UNCHAHAR TPS U#4 (Target: 30-09-2023), UNCHAHAR TPS U#5 (Target: 30-09-2023), UNCHAHAR TPS U#6 (Target: 31-08-2022), MEJA Stage-I U#1 (Target: 31-10-2023), MEJA Stage-I U#2 (Target: 30-06-2023), TANDA Stage-I U#3 (Target:), TANDA Stage-I U#4 (Target:), TANDA Stage-II U#3 (Target: 31-03-2023), TANDA Stage-II U#4 (Target: 30-09-2023)

NTPC

L&T Power Development Ltd (Nabha)	Nabha TPP (Rajpura TPP) U#1 (Target: 30-04-2021), Nabha TPP (Rajpura TPP) U#2 (Target: 28-02-2021)
Lalitpur Power Gen. Company Ltd.	LALITPUR TPS U#1 (Target: 31-12-2026), LALITPUR TPS U#2 (Target: 30-09- 2026), LALITPUR TPS U#3 (Target: 30-06-2026)
Lanco Anpara Power Ltd.	ANPARA C TPS U#1 (Target: 31-12-2025), ANPARA C TPS U#2 (Target: 31-12- 2025)
Prayagraj Power Generation Company Ltd.	PRAYAGRAJ TPP U#1 (Target: 31-12-2026), PRAYAGRAJ TPP U#2 (Target: 31-12- 2026), PRAYAGRAJ TPP U#3 (Target: 31-12-2026)
PSPCL	GH TPS (LEH.MOH.) U#1 (Target: 31-12-2026), GH TPS (LEH.MOH.) U#2 (Target: 31-12-2026), GH TPS (LEH.MOH.) U#3 (Target: 31-12-2026), GH TPS (LEH.MOH.) U#4 (Target: 31-12-2026), GGSSTP, Ropar U#3 (Target: 31-12- 2026), GGSSTP, Ropar U#4 (Target: 31-12-2026), GGSSTP, Ropar U#5 (Target: 31-12-2026), GGSSTP, Ropar U#6 (Target: 30-12-2026)

Rosa Power	
Supply	ROSA TPP Ph-I U#1 (Target: 31-12-2026), ROSA TPP Ph-I U#2 (Target: 31-12-2026), ROSA TPP Ph-I
Company	U#3 (Target: 31-12-2026), ROSA TPP Ph-I U#4 (Target: 31-12-2026)
RRVUNL	KOTA TPS U#5 (Target: 31-08-2024), KOTA TPS U#6 (Target: 31-08-2024), KOTA TPS U#7 (Target: 31- 08-2024), SURATGARH TPS U#1 (Target: 31-12-2026), SURATGARH TPS U#2 (Target: 31-12-2026), SURATGARH TPS U#3 (Target: 31-12-2026), SURATGARH TPS U#4 (Target: 31-12-2026), SURATGARH TPS U#5 (Target: 31-12-2026), SURATGARH TPS U#6 (Target: 31-12-2026), SURATGARH SCTPS U#7 (Target: 28-02-2025), SURATGARH SCTPS U#8 (Target: 28-02-2025), CHHABRA TPP U#1 (Target: 31-12-2026), CHHABRA TPP U#2 (Target: 31-12-2026), CHHABRA TPP U#3 (Target: 31-12-2026), CHHABRA TPP U#4 (Target: 31-12-2026), CHHABRA SCPP U#5 (Target: 28-02-2025), CHHABRA SCPP U#6 (Target: 28-02-2025), KALISINDH TPS U#1 (Target: 28-02-2025), KALISINDH TPS U#2 (Target: 28-02-2025)
Talwandi Sabo	TALWANDI SABO TPP U#1 (Target: 28-02-2021), TALWANDI SABO TPP U#2 (Target: 31-12-2020),
Power Ltd.	TALWANDI SABO TPP U#3 (Target: 31-10-2020)
UPRVUNL	ANPARA TPS U#1 (Target: 31-12-2025), ANPARA TPS U#2 (Target: 31-12-2025), ANPARA TPS U#3 (Target: 31-12-2025), ANPARA TPS U#4 (Target: 31-12-2025), ANPARA TPS U#5 (Target: 31-12-2025), ANPARA TPS U#6 (Target: 31-12-2025), ANPARA TPS U#7 (Target: 31-12-2025), HARDUAGANJ TPS U#8 (Target: 31-12-2026), HARDUAGANJ TPS U#9 (Target: 31-12-2026), OBRA TPS U#10 (Target: 31-12-2026), OBRA TPS U#11 (Target: 31-12-2026), OBRA TPS U#12 (Target: 31-12-2026), OBRA TPS U#13 (Target: 31-12-2026), PARICHHA TPS U#3 (Target: 31-12-2026), PARICHHA TPS U#4 (Target: 31-12-2026), PARICHHA TPS U#5 (Target: 31-12-2026), PARICHHA TPS U#6 (Target: 31-12-2026)

Annexure-A.II

				MIS Repo	rt for Status of Implemented	Islanding Sc Schemes	hemes:								
SI. No.	Islanding Scheme	SLDC	Status	Submission of Self Certification of Healitheness		SOP	SCADA Display Page				Re	emarks			
1	NAPS IS	UP	Implemented	Yes (08-10-2021)		Yes	Yes	List of officials in-charge, format for generation, islanding scheme sld and relays in RAPP IS							
2	RAPS IS	Rajasthan	Implemented	16-Aug-21		Yes	Yes	List of onio		submi	tted by R	VPN on 04.12	2.2021.	and roldyo in	IUUI I
3	Delhi IS	Delhi	Implemented												
4	Fatrankot-K3D 13	Fulijab	Implemented	Under Implement	ssion										
					DPR for PSDF	Stuc	iv	Desi	Timel an	ines Status Appro	- Propose oval	ed/Actual Procur	ement	Commiss	ionina
SI. No.	Islanding Scheme	SLDC	Status	Details of progress	funding (Required / Not Required)	Proposed	Actual	Proposed	Actual	Proposed	Actual	Proposed	Actual	Proposed	Actua
1	Lucknow-Unchahar IS	UP	Under Implementation	Scheme has been approved in 59th NRPC meeting held on 31.10.2021. In the 2231 OCC meeting, UPPTCL representative apprised that Unchant-Luckrow Islanding scheme has been successfully implemented and same is visible at SCADA of UPSLDC also (except 03 Substation: Namely 132 kV S/s tripula, 132 kV S/s bachtrawan and 132 kV S/s Hussaingan), The data of above of substation is not available at UPSLDC due to lack of OPGW. The work of laying OPGW cable is under progress and same shall be completed by not month.		-		-	-	-	-	-	-	-	-
2	Agra IS	UP	Under Implementation	Scheme has been approved in 71th NRPC meeting held on 29.01.2024. In 224th OCC, UPPTCL representative apprised forum that tender for UFR procurement is under progress.		-		-	-	-	-	-	-	-	-
3	Jodhpur-Barmer- Rajwest IS	Rajasthan	Under Implementation	Schame has been approved in 60th NRPC meeting held on 30.11.2022 in 224th OCC, RRVPNL representative mentioned logic for Jochpur-Barmer-Raywest lisianding scheme is is finalized and draft DPR is not yet submitted to NRPC Sect. In 224th OCC, RRVPNL representative and submitted to provide the DPR by next OCC.	-	-		-	-	-	-	-	-	-	-
4	Suratgarh IS	Rajasthan	Under Implementation	Scheme has been approved in 60th NRPC meeting held on 30.11.2022. In 224th OCC, RRVPNL representative mentioned DPR for implementation of Suratgarh islanding scheme is under finalization.	-	-		-	-	-	-	-	-	-	-
5	Patiala-Nabha Power Rajpura IS	Punjab	Under Implementation	Scheme has been approved in 60th NRPC meeting held on 30.11.2022. In 224th OCC, Punjab SLDC apprised forum that DPR for PSDF funding is submitted to NLDC for PSDF Funding.		-		-	-	-	-	-	-	-	-
6	Kullu-Manali-Mandi IS	HP	Under Implementation	Scheme has been approved in 60th NRPC meeting held on 30.11.2022. In 224th OCC, HPSLDC representative informed that proposed UFR scheme for both Kulu- Manih has been recommended by the Appraisal Committee of the State PSDF for approval of Honbie HPERC. The islanding scheme will go to Monitoring committee for State PSDF funding approval. Monitoring committee is expected to be scheduled in November first week.		-		-	-	-	-	-	-	-	-
7	Shimla-Solan IS	HP	Under Implementation	Scheme has been approved in 60th NRPC meeting held on 30.11.2022. A meeting was held on 18.00.24 with sideholdres under the chairmanship of MS NRPC. HPSEBL informed in the meeting that payment to GE shall be made within two months and subsequently implementation of settings shall be completed within one month. HPSLOC was requested to follow up with all stakeholders within the scheme for implementation and expedite the same.											

Status of availability of ERS towers in NR

r	1		1				
SI. No.	Transmission Utility	Voltage Level (220kV/400kV/765k V/ 500 kV HVDC etc.)	Length of the transmission lines owned by the Utility (Ckt. Kms.)	Number of ERS Sets (towers) available (Nos.)	ERS Set (towers) required as per the Govt. norms.	Location	Remarks
1	PTCUL	400kV	418.394	NIL	1		Tender has been opened and contract activities under process
							4
2	Devuerenid ND 1	220KV	1045.135	NIL	1		
2	Powergna NR-1	400 KV	11074.26	12 Towers	3	All 400kV ERS at Ballabhgarh	make-Lindsey
		765 KV	4721.85	15 Towers	1	All 765kV ERS at Meerut	Make-SBB
		500 KV HVDC	653.88	NIL	1		
		800 KV HVDC	416.58	NIL	1		
3	Powergrid NR-2	66 KV	37.56	Nil	1		ERS tower available for 400KV rating can be
		132 KV	262.7	Nil	1		used in place of lower as well as higher voltage
		220 KV	2152	Nil	1		towers can be erected will reduce due to
		400 KV	8097.3	02 Set (32 Towers)	2	Kishenpur & Jalandhar	increase in Tower Hight.
-		765 KV	337.5	Nil	1		
4	Powergrid NR-3	800KV HVDC	2205	NIL	1		4
		500KV HVDC	2566	NIL	1		
		765KV	4396	NIL	1	17	400KV ERS will be also be used in other
		400KV	12254	26 Towers	3	Kanpur	voltage level lilles
		220KV	1541	NIL	1		4
-		132KV	207	NIL	1		
5		400KV	457	NIL	1	It is kept in Phonel	Not evallable will the up based on the
0		400KV	0.4		1	and on need basis	requirements in future. However the parent
0		400KV	272		1	is moved across	company IndiGrid owns one set of ERS for all
0	BARD Transmission Company Limited	400KV	402		1	region	five regions.
9		40060	402		1		
10	NRSS XXXVI Transmission Limited	400kV	301.924	NIL	1		Element I - Operational comprising of 3 kms. Element II - Work Under Progress comprising of 221.924 kms. Element II - Work Under Progress comprising of 77 kms.
11	HPPTCL	220 kV	659	NIL	1		
		400 kV	75.7	NIL	1		
12	RVPN	132 kV	18969.958		4		ERS proposed : 01 Set at 400 kV GSS,
		220 kV	16227.979] .	3	available at 220	Jodhpur. 01 set at 400 kV GSS Bikaner
		400 kV	6899.386] 1	2	kV GSS	
		765 kV	425.498		1	Heerapura, Jaipur	
13	DTL	220kV	915.498	NIL	1	400kV Bamnauli	ERS tower available for 400KV rating can also be used for lower voltage lines as well
		400kV	249.19	02 Sets (32 towers)	1	Sub station	
14	JKPTCL						JKPTCL, Jammu: being procured
15	HVPN						JKPTCL, Kashmir:10 tower procured (out of which 3 on loan to JKPTCL, Jammu)

SI. No.	Transmission Utility	Voltage Level (220kV/400kV/765k V/ 500 kV HVDC etc.)	Length of the transmission lines owned by the Utility (Ckt. Kms.)	Number of ERS Sets (towers) available (Nos.)	ERS Set (towers) required as per the Govt. norms.	Location	Remarks	
16	PSTCL	400 kV	1666.43	2	2			
		220 kV	7921.991	2	2			
17	UPPTCL 1- Meerut	132KV	27508.321	24 Noo/15 Dupping 0		400 10/ 8/2 01	EDS will be also be used in other veltage level	
		220KV	14973.453			400 KV S/S GI.	ERS will be also be used in other voltage level	
		400KV	6922.828	Ailgie)		Norda	intes.	
	UPPTCL 2-Prayagraj	765KV	839.37					
		400KV	1804.257					
		220KV	2578.932	24 Towers		220 KV 5/S priuipur	ERS will also be used in other voltage lines.	
		132KV	4714.768					
18	POWERLINK							
19	POWERGRID HIMACHAL TRANSMISSION LTD							
20	Powergrid Ajmer Phagi Transmission Limited							
21	Powergrid Fatehgarh Transmission Limited							
22	POWERGRID KALA AMB TRANSMISSION LTD							
23	Powergrid Unchahar Transmission Ltd							
24	Powergrid Khetri Transmission Limited							
25	POWERGRID VARANASI TRANSMISSION SYSTEM LTD							
26	ADANI TRANSMISSION INDIA LIMITED		2090				Make-Lindsey ERS set available for 400KV & 500KV rating can be used for lower as well as higher voltage	
27	BIKANER KHETRI TRANSMISSION LIMITED		482	1 Set (12 towers)	1 set (12 towers)	Sami (Gujarat)	Towers. In case used for 765KV Line, No of	
28	FATEHGARH BHADLA TRANSMISSION LIMITED	500 kV HVDC 400 kV HVAC	291				Height & nos of conductors.	
29	NRSS-XXXI(B) TRANSMISSION LTD	400 kV	577.74	Not Available	Not Available		In the advance stage of process of finalising arrangement for providing ERS on need basis with other transmission utility (M/s INDIGRID).	
30	ARAVALI POWER COMPANY PVT LTD	765 kv HVAC						

*The transmission Utility with line length less than 500 ckt kms (of 400 KV lines) may be given option either to procure ERS or have agreement with other transmission utilities for providing ERS on mutually agreed terms, when need arises. (As per MoP directions)

.

											Approved Planned Outage-1				Actual Planned Outage-1	
Capacity	Name of	UNIT_NM	STN_TYP	SECTOR	REGION_	ST_NM	SH_NM	IPP	FUEL_NM	Capacity	Start Date	End Date	Reason	Start Date	End Date	Reason for any deviation
(MW) 30-	Station		E_ID		NM					(MW) 31-						
11-2023										03-2025						
660	TALWANDI	3	Т	IPP	Northern	Punjab	TSPL	FALSE	COAL	660	7-Oct-24	31-Oct-24	AOH			
	SABO TPP			SECTOR												
135	JALIPA	7	Т	IPP	Northern	Rajasthan	JSWBL	FALSE	LIGNITE	135	23-Oct-24	30-Oct-24	AOH			
	KAPURDI			SECTOR		-										
	TPP															
135	JALIPA	5	Т	IPP	Northern	Rajasthan	JSWBL	FALSE	LIGNITE	135	15-Oct-24	22-Oct-24	AOH			
	KAPURDI			SECTOR												
	TPP															
135	JALIPA	6	Т	IPP	Northern	Rajasthan	JSWBL	FALSE	LIGNITE	135	5-Oct-24	12-Oct-24	AOH			
	KAPURDI	-		SECTOR		5										
	TPP															
250	CHHABRA	3	Т	STATE	Northern	Rajasthan	RRVUNL	FALSE	COAL	250	1-Oct-24	20-Oct-24	AOH			
	TPP			SECTOR		5										
660	CHHABRA	6	Т	STATE	Northern	Rajasthan	RRVUNL	FALSE	COAL	660	1-Sep-24	5-Oct-24	AOH			
	TPP			SECTOR												
110	TANDA TPS	3	Т	CENTRAL	Northern	Uttar	NTPC Ltd.	FALSE	COAL	110	1-Oct-24	30-Oct-24	AOH			
				SECTOR		Pradesh										
225	KASHIPUR	1	Т	IPP	Northern	Uttarakhan	SrEPL	FALSE	NATURAL	225	30-Sep-24	2-Oct-24	Offline Waterwash			
	CCPP			SECTOR		d			GAS							
214	KASHIPUR	2	Т	IPP	Northern	Uttarakhan	SrEPL	FALSE	NATURAL	214	6-Oct-24	8-Oct-24	Offline Waterwash			
	CCPP			SECTOR		d			GAS							
214	KASHIPUR	2	Т	IPP	Northern	Uttarakhan	SrEPL	FALSE	NATURAL	214	21-Oct-24	23-Oct-24				
	CCPP			SECTOR		d			GAS				Online waterwash	1		

Analysis of corrosion and scaling in high-voltage directcurrent valve cooling water system

X W Li¹ and D Ding^{2,*}, L Wang² and L W Sun²

¹State Grid Shaanxi Electric Power Company, Xi'an, China. ² State Grid Shaanxi Electric Power Research Institute, Xi'an, China.

*E-mail: dingde5160@163.com

Abstract. In this paper, the problems of corrosion and scaling in the converter valve tower cooling water system based on the \pm 500kV Baode HVDC transmission project with Siemens light-triggered thyristor HVDC transmission technology are analyzed in detail. The corrosion and scaling phenomenon can cause the closure or emergency shutdown of converter valves and bring potential dangers to the safe and stable operation of power grid. So far, there is no fundamental solution to this problem. Based on the investigation of scaling phenomenon of grading electrode and corrosion of thyristor aluminum alloy heat sinks, the scaling law of the grading electrode is proposed and the cause of scaling is put forward and analyzed. Some suggestions are given.

1. Introduction

Converter valve is the core equipment of a high-voltage, direct current (HVDC) electric power transmission system. Considering the valve loss, which inevitably exists, the heat generated by valve loss could largely harm the performance of converter valve. Thus, the internal water cooling system, which effectively helps dissipating the heat out of valve, is of great significance to ensure the normal operation of the converter valve [1]. Unfortunately, operating experiences show that the problem of corrosion and scaling is very common in inner cooling water system of converter valves [2-12]. Despite the use of mixed ion exchange resin for desalination and purification of the internal cooling water of the converter valve, corrosion and scaling still exist in the internal cooling water system of the converter valve, leading to an unsatisfied performance of the heat dissipation and insulation of the converter valve. Accordingly, the safe and stable operation of the thyristor, reactor, damper capacitor and water pipe of the converter valve could be negatively affected.

In this paper, the scaling problem of bipolar grading electrodes in the ±500 kV Baode HVDC power transmission project is taken as the research object and the corrosion and scaling issues of the internal cooling water system of the converter valve are analyzed and the relevant recommendations and solutions are proposed.

2. Valve cooling water path and grading electrode

2.1. HVDC transmission system

The HVDC transmission technology is one of the most advanced and energy-saving power transmission and transformation technologies in the world, and it is also the key developing technology in Chinese technical equipment field. It has the advantages of asynchronous operation between two AC systems,

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1

fast response, precise adjustment, convenient operation, stable voltage distribution along the line and low operation loss. Moreover, the investment and operation cost of HVDC transmission line are less than that of AC transmission system [13]. HVDC transmission system usually consists of rectifier station, inverter station and HVDC transmission line. Its wiring principle is shown in figure 1.

Figure 1. HVDC transmission system

2.2. Valve cooling water system

Converter valve is one of the most important equipment in HVDC transmission system. Under normal operation, the thyristor generates high heat with high current flowing, which causes the temperature of the thyristor to rise sharply. The thyristor must be cooled effectively, or it will be burnt out. The temperature of the thyristor of the converter valve is generally less than 90°C. The heat dissipation of thyristor is realized by the aluminum alloy heat sinks which is closely contacted with thyristor by internal cooling water cooling. The system flow chart is shown in figure 2.

Figure 2. Air cooling water system

^{2.3.} Valve assembly waterway

The valve hall of the converter valve is divided into three phases, namely A, B and C. Each phase is subdivided into left (L) and right (R) sides, each side being split into six layers. Each valve assembly is composed of series thyristors. The thyristors are separated by aluminum alloy heat sinks. The heat sinks are connected by waterways, and the heat of the heat sinks is derived by cooling water.

The connection modes of cooling water pipeline of valve assembly could be segmented to series type, parallel type and series-parallel type. The series type of connection mode is mainly based on ABB technology route. The flow rate in series type is large, but the temperature difference between the head and the tail is huge too. The parallel type is mainly based on SIEMENS technology route. The series-parallel type, mainly based on Zhonglian Puri technology route, combines the advantages of ABB and SIEMENS given water route arrangement of flow and temperature.

SIEMENS technology route was adopted in ± 500 kV converter station. Its valve assembly waterway was parallel, A is thyristor, B is heat sinks, C is connecting water pipe. The schematic diagram is shown in figure 3, and the valve assembly is shown in figure 4.

Figure 3. Parallel connection water line

Figure 4. SIEMENS Valve assembly

2.4. Grading electrode position

In order to avoid discharging unevenly on the inner and outer wall of cooling water pipeline in the converter valve due to uneven voltage distribution, and leakage current caused by the contact between metal equipment and water pipeline in the valve assembly, grading electrodes were installed on the main cooling water pipe of the valve tower and the water distribution and catchment pipes in the valve assembly. The appearance of the grading electrodes is shown in Figure 5. For the grading electrode, the effective part presented is platinum, of 23.8 mm in length and 2 mm in diameter; the remaining part is stainless steel. The installation of grading electrodes could help realizing even voltage distribution on the inner and outer wall of the main water cooling pipeline and help releasing leakage current, which now transfer from thyristor aluminum alloy heat sinks to inert platinum electrode. By doing this, the corrosion phenomenon of electrical equipment could be avoided [14].

Figure 5. Grading electrodes

There were 432 grading electrodes installed in the single pole of Baoji Converter Station, including 24 zero potential electrodes. The number of grading electrodes installed on the T-type connection part of valve assemblies and main water pipe was 144, the number of grading electrodes installed on the anode side of thyristor valve assemblies was 288 and the number of grading electrodes installed on the cathode side was 288. The rest were electrode valve tower interlayer electrodes. The installation positions of grading electrodes could be divided into the following categories, as shown in table 1, L: left side, R: right side, L1: on the left and level 1, R1: on the right and level 1, R2\L3\L4\R4\R5\L6 and so on.

Valve tower electrode loc (A phase, B phase, C ph	cation nase)	Number of electrodes
Top part tuba	L sides	2
Top part tube	R sides	2
	L1 and R1 upper part	4
	R2 upper part	2
S shape tuke	L3 upper part	2
5-snape tube	L4 and R4 upper part	4
	R5 upper part	2
	L6 upper part	2
T-type tube	L and R sides	12
Water distribution nine and confluence nine	Cathode sides.	24
water distribution pipe and confidence pipe	Anode sides	24
Bottom part tube	L and R side	2

3. Scaling on Grading Electrodes

Based on the investigation of several HVDC transmission projects in China, it is found that the scaling phenomenon of grading electrodes exists in different degrees. Figure 6 (a) and (b) illustrate the difference in scaling for grading electrodes of ABB technical route and grading electrode of Siemens technical route, respectively. In addition, figure 6(c) shows a third type of grading electrode of Zhonglian Puri technical route with some scaling presented.

Figure 6. Three types of electrode scaling

3.1. Scaling phenomenon in Inverter station

The scaling phenomena in Baoji Converter Station were as following: the scaling of the grading electrodes on the anode side of thyristor on the valve assembly was slight and loose; the scaling of the grading electrodes on the cathode side was serious and firm; the zero potential point of the main water pipe of the valve tower was not scaling. The scaling of the grading electrode at the T-type connection between the water distributing pipe of the valve assembly and the main water pipe was moderate, but scaling was very firm.

The scaling on the anode side was slight. The thickness of the scaling of electrode could be calculated as the following: the diameter of the electrode with scaling minus the diameter of the electrode without scaling, and then divide the result by 2. The average thickness of scaling was 0.1-0.2 mm. The scaling distributed evenly, the scaling was crisp and easy to fall off. The scaling on the upstream side was slightly thicker than that on the back side. Only the root part was not covered by scaling, as shown in figure 7.

Figure 7. Deposit on grading electrodes at anode side of valve assembly of Invert station

The scaling of the grading electrodes on the cathode side is serious. Generally, the scaling thickness is 0.6-0.8 mm, the end is thick, the tail is thin, the scaling is firm, and it is not easy to fall off. There is no difference between the scaling on the front and back surfaces. Only the root is not covered by scaling, as illustrated in figure 8.

Figure 8. Deposition of grading electrodes at cathode side of valve assembly of Invert station

Observing the grading electrode at the T-type connection of valve assembly distributing pipeline and main water pipe, general scale thickness is 0.6-0.8 mm, scaling distributed evenly, scaling is very firm, firmly attached to the electrode surface. The scaling is no difference between water front side and back side. Only half of length of the platinum electrode part is covered by scaling, as seen in figure 9.

Figure 9. Deposition of grading electrodes at T-junction of the valve assembly and the main water pipe of Invert station

3.2. Scaling phenomenon in Rectifier station

Deyang converter station basically operates as a rectifier, and the scaling of anode side grading electrodes on valve assembly was serious, as shown in Figure 10, which was basically consistent with the scaling of cathode side of valve assembly in rectifier station. The scaling of grading electrodes on cathode side was slight, as shown in figure 11, which was basically consistent with the scaling of anode side of valve assembly in rectifier station; the zero potential point of main water pipe in valve tower was not scaling. The scaling degree of grading electrodes installed on T-type connection of water distributing pipe and main water pipe was at intermediate level, as seen in figure 12.

Figure 10. Deposit on grading electrodes at anode side of valve assembly of rectifier station

Figure 11. Deposit on grading electrodes at cathode side of valve assembly of rectifier station

Figure 12. Deposit on grading electrodes at T-junction of the valve assembly and the main water pipe of rectifier station

4. Scale distribution principle

4.1. Distribution characteristics of scaling

According to the electrode scaling thickness, that is, the diameter of the electrode after scaling minus the diameter of the electrode without scaling, and then divided by 2, and position of grading electrodes scaling, the 864 branch electrodes of bipolar at the BAOJI converter station were all sampled for detection. The electrodes scaling were divided into 6 classes: valve assembly cathode side with serious scaling; anode side with slight scaling; valve assembly T-type tube electrodes with scaling in the middle; S-shape tube electrodes, top part electrodes, pole II bottom screen electrode with scaling situation in agreement with those at anode side, as seen in tables 2 and 3, the diameter of the electrode after scaling is listed. note: The pole I converter valve has been operating for 44 months, the bottom voltage of the valve tower is +500 kV. CL:CL represents the left side of the valve tower of the C phase converter valve, CR\BL\BR\AL\AR and so on.

Table 2. Pole I	grading e	electrode	with dep	osits' data	i analysis (†	unit: mm)
Average value	CL	CR	BL	BR	AL	AR
Top part	2.04	2.04	2.02	2.02	2.03	2.05
Mid-upper part	2.11	2.02	2.00	2.01	2.01	2.02
S-type tube	2.05	2.04	2.07	2.05	2.03	2.03
Cathode side	2.63	2.94	2.96	2.95	2.94	2.94
Anode side	2.13	2.23	2.23	2.23	2.23	2.23
T-shape tube	2.04	2.16	2.13	2.08	2.12	2.09
Bottom part	2.88	2.72	2.73	2.65	2.68	2.83
Table 3. Pole II	grading of	electrode	with dep	osits' data	ı analysis (unit: mm)
Average value	CL	CR	BL	BR	AL	AR
Top part	2.04	2.05	2.04	2.04	2.04	2.04
Mid-upper part	2.45	2.52	2.49	2.72	2.62	2.02
S-shape tube	2.06	2.04	2.06	2.06	2.05	2.08
Cathode side	2.34	2.28	2.30	2.28	2.31	2.29
Anode side	2.99	2.93	3.09	2.89	2.95	3.05

4.2. Distribution and treatment of scaling

T-type tube

Bottom part

2.24

2.01

Baoji converter station functions as an inverter station, therefore, the scale distribution of 432 grading

2.23

2.02

2.14

2.01

2.19

2.02

2.07

2.03

2.10

2.01

electrodes of pole I and pole II were basically identical. Thus, the scaling regularity of grading electrodes of Inverter station could be obtained: scaling on the cathode side of thyristor is serious and sturdy, the scaling on the anode side is slight and loose, while scaling degree at the T-type connection is moderate and very firmly attached.

As a rectifier station, the scale distribution of 432 grading electrodes of pole I and pole II in Deyang converter station were the same, but it was different from that in Baoji converter station. Therefore, the scaling regularity of grading electrodes could be concluded that: scaling on the anode side of thyristor is serious, scaling on the cathode side is slight and scaling on the T-type connection is moderate.

Therefore, according to the scaling distribution law of grading electrodes, scaling removal could be carried out purposefully. Inverter station could aim at removing scaling on the cathode side of thyristor of valve assembly, while rectifier station could only focus on scaling on the anode side of thyristor of valve assembly [15].

5. Related detection analysis and treatment recommendations

5.1. Scale analysis

The scales of all grading electrodes were broken and dissolved in hot dilute sulfuric acid with 35% mass concentration. By doing this, the content of metal elements was detected by ICP emission spectrometer. Aluminum elements accounted for 90-96%, iron elements 5-8%, calcium elements 0.1-0.5%, magnesium elements 0.1-0.5%, sodium elements 0.05-0.1%.Detecting the resistance values of the extreme and tail parts of the grading electrode after scaling ,the resistance values were found to be 280-350 k Ω . This indicates that the main harm of the scaling of the electrode lies in the gradual loss of the original function of grading voltage and transferring leakage current.

5.2. Water quality inspection

The main metal element found in scaling was aluminum. Analyzing the mass concentration of metal elements in inner cooling water and makeup water of pole I and pole II, seen in Table 4. It was found that the mass concentration of aluminum was very low, only 1.1-1.3 ug/L. This indicates that the medium aluminum in scaling of grading electrode may come from the makeup water of valve tower. Therefore, the concentration of Mg^{2+} and Ca^{2+} and the mass concentration of aluminum in the makeup water should be reduced.

	imple ana	19313 01	of data off cation for contents (µg/)					
Sample name	Na^+	NH^{4+}	K^+	Mg^{2+}	Ca^{2+}	Al		
Pole I de-gas jar	2.6	0.2	1.5	0.3	5.9	1.3		
Pole II de-gas jar	1.1	0.2	0.8	0.2	3.6	1.1		
makeup water	1105.8	0.2	389.5	10.3	75.8	1.5		

Table 4. Water sample analysis of data on cation ion contents (μ g/L)

5.3. Structure of aluminum alloy heat sinks

The aluminum alloy material directly contacting the internal cooling water system is only the aluminum alloy heat sinks of the thyristor. Unfolding a piece of aluminum alloy heat sinks running for 3 years, it could be found that there were many black corrosion points in the water inlet and outlet. As shown in figure 13, the water inlet channel (the so-called "double mosquito perfume water path" section) was bright and clean, while the outlet channel had black corrosion spots, as shown in figure 14. The results show that the corrosion products of aluminum alloy may come from the scaling of the grading electrodes, and the corrosion effect exerts no obvious harm to the aluminum alloy heat sinks.

Figure 13. Inlet and outlet section of the heat sink

Figure 14. "Double mosquito perfume water path" section inside of the heat sink

5.4. Waterway voltage analysis

Since grading electrodes connect with heat sink, grading electrodes potentiality varies with the heat sink potentiality, the voltage difference among the grading electrodes is the sum of several heat sink voltage difference, the results listed in table 5.

Table 5. Voltage in the water circuit			
Title	Voltage at two ends(V)	Valve condition	Current direction
Two electrodes	26	turn-on	Anode to Cathode
Neighboring heat sinks	2	turn-on	Anode to Cathode
Head-tail heat sinks	26	turn-on	Anode to Cathode
Two electrodes	41665	turn-off	Cathode to Anode
Neighboring heat sinks	3205	turn-off	Cathode to Anode
Head-tail heat sinks	41665	turn-off	Cathode to Anode

5.5. Electrolytic corrosion and scaling analysis

Based on the aluminum-hydroelectric potential-pH chart [16], the following patterns are possible. If the potential exceeds 1.35V above zone with oxygen reaction, the electrolytic water product is oxygen, see Eg.(1). If the potential is below 0.12V zone with the hydrogen reaction, see Equation (2). If the potential
IOP Publishing

IOP Conf. Series: Materials Science and Engineering 474 (2019) 012017 doi:10.1088/1757-899X/474/1/012017

is between 0.12-1.35V, the absorption oxygen corrosion will take place, see Equation (3). If the potential is over -1.676V, aluminum loses electrons and is electrolyzed, see Equation (4).

$$4OH^{-} - 4e^{-} \rightarrow 2H_{2}O + O_{2} \uparrow$$
(1)

$$2H^+ + 2e \to H_2 \tag{2}$$

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$
(3)

$$Al \to Al^{3+} + 3e \tag{4}$$

Through the calculation of $Al(OH)_3$ pks=32.89 and H₃AlO₃ pK1=11.2, at 18~25°C, the pH value is 5.6~5.8, the oxide film of alumina has the minimum solubility, that is, the aluminum alloy protective film is the best. When the pH value is less than 4.6 or more than 8.3, the protective film begins to dissolve, see Equations (5) and (6):

$$Al(OH)_{3} \leftrightarrow Al(OH)^{2+} + 2OH^{-}$$
 (5)

$$Al(OH)_{3} \leftrightarrow H_{3}AlO_{3} \leftrightarrow H_{2}AlO_{3}^{-} + H^{+}$$
(6)

Therefore, the aluminum alloy heat sink is subject to electrolytic corrosion. The production of hydrogen or oxygen will generate $Al(OH)_4^-$. So, in the cooling water system, when the valve is turned on, the aluminum hydroxide is absorbed by the electrode surface of valve anode side. When the valve is turned off, the aluminum hydroxide is absorbed by the electrode surface of valve cathode side. In addition, the electrode at the positive potential can produce oxygen, with its volume being about 50% of that at the negative potential, and the electrolysis gas can remove the scaling. Therefore, both rectifier and invert stations have more severe scaling in the electrode at the positive potential than at the negative one.

6. Conclusions

Corrosion in HVDC valves cooling water system was analyzed. The chemical composition of the scaling on the electrodes revealed a large amount of aluminum. Further investigation showed that the aluminum detected was a corrosion product coming from the makeup water of internal cooling water and aluminum alloy heat sinks. It could be found that the surface conductive resistance of the grading electrode increased significantly and the function of grading voltage and transferring leakage current were lost after scaling. Observing the internal of the heat sinks of aluminum alloy, corrosion spots were found. But they are not enough to harm its safe operation. The experiments illustrated that the scaling at the positive potential was higher than that at the negative potential. The scaling principle was different in the rectifier and inverter stations. In the rectifier station, the scaling of grading electrodes at the anode side of valve is serious, while the scaling of grading electrodes at the cathode side is more severe in the inverter station. Based on these regularities of the distribution of the scaling on grading electrodes, targeted scale removal measurements could be carried out. On account of the corrosion of aluminum alloy heat sinks caused by leakage current electrolysis, the conductivity of the internal cooling water system should be lowered as far as possible, and the pH value should be adjusted to a reasonable range.

References

- [1] Liu Z Y 2013 UHV AC/DC Power Grid (Beijing: China Power Press) pp 479-80
- [2] Arinde S Dhaliwal and Fu Y 2008 Special Report for Group B4 (Cigre. Question 1.1-1.5) p 110
- [3] Tian X W, Yang J M and Zhang W P 2010 Modern Science 8 pp 68-70
- [4] Wang Y Y, Hao Z J and Lin R 2006 Southern Power System Technology 32 pp 80-3
- [5] Li Y 2009 Journal of Guizhou Electric Power Technology 115 pp 5-6
- [6] Zhang P D, Hao Z J and Liu H T 2008 Journal of Electrical Engineering Technology 12 pp 1-2
- [7] Qian Y H, Zhou Y Y and Xu C W 2012 Advanced Materials Research 354-355 pp 1157-60
- [8] Deng B F, Sun H M and Cao J F 2008 Southern Power System Technology 2 pp 73-6
- [9] Wang C, Liu X, Wang X, Liu N and Jiao X Y 2015 Electrical Insulation Conf. (EIC) (Seattle

IOP Conf. Series: Materials Science and Engineering 474 (2019) 012017 doi:10.1088/1757-899X/474/1/012017

Washington USA) pp 7-10

- [10] Neubert and Holweg 2007 Siemens Investigation Report of Scaling Phenomenon on Grading Electrodes in Thyristor Valve Cooling Cirguit (Erlangen, Simens Technical Note) p 7
- [11] Lips H P 2002 IEEE Transactions on Power Delivery 9 (4) pp 1830-1837
- [12] Jackson P O, Abrahamsson B, Gustavsson D and Igetoft L 1997 IEEE Transactions on Power Delivery 12 (2) pp1049-1052
- [13] Zhao W J 2011 HVDC Transmission Engineering (Second edition) (Beijing: China Power Press) pp 26-27
- [14] Zhang J W, Wang M H, Deng W B, Luo B and Zhu J 2012 High Voltage Apparatus 51(32) pp 22-25
- [15] Fu J H, Li Q Y, Gu Y G, Sun H T, Jiao Y F and Zuo K 2014 Shaanxi Electric Power 42(10) pp 72-75
- [16] Yang Z H, Xu N and Qiu Z X 2000 Journal of Northeast University (Natural Science Edition) 21(4) pp 401-3

International Journal of ELECTROCHEMICAL SCIENCE www.electrochemsci.org

Short Communication

Corrosion Behavior of Aluminum in Carbon Dioxide Aqueous Solution at 50 °C

Daoyu Li¹, Zhen Shi², Huaping Xu¹, Yi Chen³, Wenxin Feng¹, Zhiyuan Qiu¹, Hao Liu¹, Gang Lv¹, Shengping Wang^{2,*}, Youping Fan⁴

¹ Guiyang Bureau, Extra High Voltage Power Transmission Company, China Southern Power Grid (CSG), Guiyang 550081, China
 ² Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074, China
 ³ Operational Technology Department, Extra High Voltage Power Transmission Company, China Southern Power Grid (CSG), Guangzhou 510663, China
 ⁴ School of Electrical Engineering, Wuhan University, Wuhan 430072, China
 *E-mail: <u>spwang@cug.edu.cn</u>

Received: 15 January 2019 / Accepted: 14 February 2019 / Published: 10 March 2019

In this work, the corrosion behavior of aluminum in carbon dioxide solutions with different concentrations at high temperature (50 °C) was studied. The corrosion of aluminum in the carbon dioxide solutions was inhibited to a certain extent compared to the corrosion in deionized water. It was found that an aluminum electrode in 0.84 μ mol L⁻¹ carbon dioxide solution with pH 4.35 had the lowest corrosion rate as observed from its lowest corrosion current, the most positive corrosion potential, and the maximum charge transfer impedance. The mechanism for aluminum corrosion inhibition was that HCO₃ generated by carbon dioxide ionization developed an ordered charge field on the aluminum surface, shielding the diffusion of aluminum ions and inhibiting the dissolution of the oxide film on the aluminum surface. SEM, EDS and XRD confirmed that the corrosion products covering the surface of the aluminum electrode were $Al(OH)_3$ and/or Al_2O_3 . Based on the above, it was elucidated that the Pt grading electrodes of the high voltage direct current (HVDC) valve cooling system lower the scaling rate in solutions with a certain concentration of carbon dioxide, and it was shown that the concentration of aluminum ions in the inner cooling water is a crucial factor affecting the scaling of grading electrodes. Therefore, reducing the concentration of aluminum ions in the inner cooling water, in other words, inhibiting the corrosion of aluminum, is the fundamental means for solving the scaling problem of the grading electrode. This paper will contribute to the research on production improvement techniques used for HVDC valve cooling systems.

Keywords: Aluminum, Corrosion, Carbon dioxide solution, Bicarbonate radical, Radiator, Thyristor, High voltage direct current

High voltage direct current (HVDC) transmission systems have become the preferred resource allocation and long distance power transportation method due to their narrow transmission corridor, high transmission efficiency, and low power consumption [1, 2]. Unfortunately, the scaling of grading electrodes in deionized water cooling circuits of HVDC power transmission modules is a long-known and unsolved problem that has a great impact on the safe operation of the HVDC transmission system. Deionized water is used as the cooling water circulating in the in-valve cooling system, and its working temperature is in the range of 48-52 °C. Grading electrodes are cylindrical bright platinum electrodes with deposition of mixed aluminum oxides and hydroxides (alumina) [3, 4]. The aluminum element in the deposition is derived from corrosion of the aluminum radiator and is precipitated on the surface of the grading electrodes under appropriate conditions. To solve the scaling problem of the grading electrode, it is necessary to suppress the corrosion behavior of the aluminum radiator in the in-valve cooling water system [5]. Previous reports have focused on the corrosion characteristics of aluminum in weak acid media (hydrochloric acid, sulfuric acid) [6, 7], aqueous alkaline solutions [8, 9] and neutral dilute salt solutions (for instance, halide media [10, 11] and sodium sulfate solution [12]).

According to the studies by Weber [13] and Siemen [14], the introduction of a certain concentration of carbon dioxide in the deionized water at 25 °C lowered the scaling rate of grading electrodes. However, they did not identify the origin for the lowering of the grading electrode scaling rate. The scaling on the surface of the grading electrode is due to aluminum deposition, indicating that the corrosion behavior of the aluminum radiator in the inner cooling water system was suppressed when the scaling rate was lowered. This paper discusses the electrochemical corrosion behavior of aluminum in different concentrations of carbon dioxide aqueous solution at 50 °C in order to elucidate the corrosion mechanisms, providing guidance for solving the scaling problem of the grading electrode in the HVDC valve cooling system.

2. EXPERIMENTAL SECTION

2.1. Electrochemical system

An electrochemical system for testing consisted of a working electrode, a reference electrode, a counter electrode and an electrolyte. Platinum black electrodes were used as the counter electrodes, and saturated calomel electrodes (SCE) were used as the reference electrodes. The SCE potential at 50 °C is 0.228 V (relative to the standard hydrogen electrode (SHE)). The working electrodes were cut from the aluminum radiator with a 1 cm \times 1 cm working surface. The model 3003 aluminum electrode was used [15] that was composed of Si (0.57 wt%), Fe (0.63 wt%), Cu (0.14 wt%), Mn (1.27 wt%), Zn (0.09 wt%), Li (0.03 wt%) and Al (97.31wt%). All of the surfaces other than the 1 cm² working surface were coated with epoxy resin. Prior to testing, the working electrodes were polished with diamond paper and nano-alumina powder, cleaned with deionized water and absolute ethanol, and dried and immersed in the testing electrolytes for 24 h.

Different concentrations of carbon dioxide electrolyte were prepared by the aeration method, and the concentration was controlled by different ventilation times. First, N₂ was injected into deionized water (100 mL) for 5 min (excluding the dissolved air in deionized water), and then CO₂ was injected into deionized water for 0, 10, 20, 30, 40, 50 and 60 min. Finally, all electrolytes were closed and left standing for 12 h. The concentrations of the carbon dioxide solutions were tested according to the ISO 925-1997 standard [16]. An S470 pH meter was used to test the pH of the electrolytes.

2.2. Electrochemical Test

Steady state polarization curves and electrochemical impedance spectroscopy (EIS) spectra were obtained using a CHI660D electrochemical workstation. The potential scan rate was 1 mV s⁻¹, and the potential range was 0.8 V (ranging from the potential 0.4 V lower than the stable potential to the potential 0.4 V higher than the stable potential). The corrosion potential and corrosion current density were obtained from the polarization curves.

The corrosion characteristics of the aluminum surface were determined from the results of EIS analysis that was performed over a frequency range from 1 Hz to 10^5 Hz with an amplitude of 5 mV. The electrolyte temperatures for all tests were between 48 and 52 °C. During the testing, the electrochemical systems were kept in a shielding box.

2.3. Characterization

All of the SEM, EDS, and XRD test samples underwent accelerated corrosion by potentiostatic anodic oxidation for a more clear observation and analysis of the corrosion surface and corrosion products of aluminum. The anodization process used a two-electrode system with platinum as the cathode and an aluminum electrode after pre-treatment (polished, washed) as the anode. The stable potential (open circuit potential) at various concentrations was tested prior to the anodization. Based on the stable potential, the oxidation overpotential of 30 mV was increased to conduct accelerated corrosion experiments. The compositions of corrosion products were determined using a D8-Focus X-ray powder diffraction instrument with a Cu target. The scanning angle range was from 5 to 80 degrees, and the scan rate was 8° min⁻¹. SEM was performed using an SU8010 ultrahigh resolution field emission scanning electron microscope equipped with high performance X-ray energy dispersive spectroscopy (EDS).

3. RESULTS AND DISCUSSION

3.1. Different concentrations and pH of carbon dioxide solutions

The concentrations and pH of the carbon dioxide solution at different ventilation times are shown in Table 1. For 0-30 min, as the ventilation time increased, the concentration of the carbon dioxide solution gradually increased and the pH gradually decreased. Until the ventilation time of 40 min, the concentration and pH of the carbon dioxide solution tended to be stable, indicating that the prepared carbon dioxide solution was near saturation. The concentration of HCO_3^- in the carbon dioxide solution was calculated according to formula (3), and the concentration of HCO_3 showed the same trend as the concentration of the carbon dioxide solution.

$$CO_{2} + H_{2}O = H_{2}CO_{3} \quad (1)$$

$$H_{2}CO_{3} = H^{+} + HCO_{3}^{-} \quad (2)$$

$$C(H^{+}) = C(HCO_{3}^{-}) = \sqrt{C(CO_{2})K_{a1}} \quad (3)$$

$$HCO_{3}^{-} = H^{+} + CO_{3}^{2-} \quad (4)$$

Ventilation time of carbon dioxide solution (min)	Concentration of carbon dioxide solution (µmol L ⁻¹)	рН	Calculated concentration of HCO ₃ ⁻ in electrolytes (µmol L ⁻¹)		
0	0	6.12	0.76		
10	345	5.76	1.74		
20	535	5.37	4.27		
30	750	4.67	21.38		
40	850	4.36	43.65		
50	886	4.35	44.67		
60	876	4.35	44.67		

Table 1. Concentration and pH of the carbon dioxide solution at different ventilation times

According to the ionization reactions (1), (2) and (4) of carbon dioxide in water, CO₂, H₂CO₃ molecules, and HCO₃⁻ and CO₃²⁻ ions are present in the carbon dioxide solution. For the study of the corrosion mechanisms of aluminum in the carbon dioxide solution, the CO₂ and H₂CO₃ molecules and the HCO₃⁻ and CO₃²⁻ ions in the carbon dioxide solution should be analyzed. Examination of the equilibrium ionization constants shows that the second-order ionization constant (Ka₂ = 4.7×10^{-11}) of carbonic acid is far weaker than the first-order ionization constant (Ka₁ = 4.7×10^{-7}). Thus, there are more HCO₃⁻ ions in the solution. Therefore, it is speculated that HCO₃⁻ ions play a major role in inhibiting aluminum corrosion in the carbon dioxide solution.

3.2. Polarization curves

The polarization curves of the aluminum electrodes are shown in Fig. 1. It is well known that the more positive the corrosion potential and the lower the corrosion current, the lower the aluminum corrosion rate [17, 18]. As the concentration of the carbon dioxide solution increased to 850 μ mol L⁻¹, the corrosion potential of aluminum was gradually positively shifted, indicating that the corrosion of aluminum in the carbon dioxide solution was inhibited.

The data for the corrosion potential and the corrosion current density of the aluminum electrodes in the electrolytes are shown in Table 2. The corrosion current of aluminum in the carbon dioxide solution was lower than that in deionized water, indicating that the corrosion resistance of aluminum in the carbon dioxide solution was better than that in deionized water. The lowest corrosion current density and the most positive corrosion potential of aluminum were measured in the 850 μ mol L⁻¹ carbon dioxide solution, indicating that the lowest corrosion rate of aluminum was obtained in the 850 μ mol L⁻¹ carbon dioxide solution. Thus, injection of CO₂ into deionized water can reduce the corrosion of aluminum.

Figure 1. Polarization curves of aluminum in the carbon dioxide solution.

Concentration of carbon	Corrosion	Corrosion current	Anodic Tafel	Cathodic Tafel
dioxide solution	potential	density	slope	slope
(μmol L ⁻¹)	(V)	$(nA \text{ cm}^{-2})$	$(V \text{ dec}^{-1})$	$(V dec^{-1})$
0	-0.884	248.9	0.209	-0.124
345	-0.814	237.4	0.214	-0.145
535	-0.748	219.9	0.217	-0.221
750	-0.719	167.1	0.220	-0.272

122.6

0.226

-0.195

-0.692

Table 2. Corrosion potential and current densities of aluminum in carbon dioxide solution at 50 °C.

3.3. EIS curves

850

According to the analysis of the surface state of the aluminum electrode, contributions from charge transfer impedance due to the oxidation of aluminum, diffusion impedance of ions in the electrolyte, impedance of the electric double layer capacitor, and impedance of the cladding layer should be present. The EIS curves of the aluminum electrode in carbon dioxide solutions with different concentrations are shown in Fig. 2a. The Nyquist diagrams of aluminum corrosion in carbon dioxide solutions with different concentrations show similar plots consisting of a semicircle and a straight line.

The physical meaning of the semicircle diameter in the high-frequency region is the charge transfer impedance (Rct) during the etching process, and the charge transfer impedance reflects the corrosion resistance of the aluminum in the solution. The lower the charge transfer impedance, the lower the aluminum corrosion resistance [19-21]. The equivalent circuit diagram of the electrochemical impedance spectrum is shown in Fig. 2c.

Figure 2. EIS curves (a), partially enlarged view of the curves (b), and their equivalent circuit model (c) for the aluminum electrodes in the carbon dioxide solutions at stable potential. The original data curves and the fitting curves are indicated by dotted and solid lines, respectively.

 R_1 represents the resistance of the solution between the aluminum electrode and the reference electrode, R_2 represents the impedance of the electrolyte through the deposition layer, R_3 represents the charge transfer impedance for aluminum oxidation, C_1 represents the capacitance of the cladding layer, C_2 represents the capacitance of the double layer, and W represents the diffusion impedance of the ions in the electrolyte [22, 23].

Concentration	R_1	R_2	R ₃	C_1	C_2
(µmol L ⁻¹)	$(\mu mol L^{-1})$ (Ω)		$(10^{-6}\Omega)$	$(10^{-9}F)$	(10 ⁻⁶ F)
				·	
0	753.0	1773	25.82	1.709	4.346
345	706.5	2064	30.26	1.464	4.865
535	639.9	2615	33.83	1.233	9.418
750	552.2	2825	38.79	1.168	2.249
850	273.3	3068	39.93	1.449	5.173

Table 3. EIS parameters obtained by fitting the data to equivalent circuit model.

The data for the corresponding numerical simulations of the equivalent circuit are shown in Table 3. As the concentration of the carbon dioxide solution increased to 850 μ mol L⁻¹, the charge transfer resistance gradually increases, indicating that the corrosion resistance of aluminum gradually increases and that the corrosion resistance of aluminum in the carbon dioxide solution was better than that in the deionized water. The highest charge transfer impedance was observed for the oxidation of aluminum in the 850 μ mol L⁻¹ carbon dioxide solution. This result was consistent with the results of the polarization curves shown in Fig. 1.

3.4. SEM and EDS

The surface morphologies of the aluminum electrode after corrosion in carbon dioxide solutions with different concentrations are shown in Fig. 3. Fig. 3b shows the presence of significant corrosion on the aluminum electrode surface in deionized water, with gullies, pores, and corrosion products observed. However, the corrosion of aluminum in the carbon dioxide solutions was relatively mild. Fig. 3c and 3d show that only small corrosion holes appeared on the electrode surface for the carbon dioxide solutions at the lower concentrations (345, 535 μ mol L⁻¹). In Fig. 3e, and 3f, it is observed that the electrode surfaces were very smooth in the carbon dioxide solutions with higher concentrations (750, 850 μ mol L⁻¹), and no obvious corrosion occurred.

Figure 3. SEM images of the original aluminum (a) and the aluminum electrode surface in 0 μmol L⁻¹ (b), 345 μmol L⁻¹ (c), 535μmol L⁻¹ (d), 750 μmol L⁻¹ (e), and 850 μmol L⁻¹ (f) carbon dioxide solution.

The SEM and EDS of the corrosion products of the aluminum electrode in deionized water and in the 850 μ mol L⁻¹ carbon dioxide solution are shown in Fig. 4. It is observed from Figs. 4a and 4e that the corrosion of aluminum in deionized water was more severe and that more holes appeared. According to the EDS elemental diagram, the distributions of elements for the corrosion products in deionized water and in the 850 μ mol L⁻¹ carbon dioxide solution were similar. Aluminum was uniformly distributed on the electrode surface, while oxygen was mainly concentrated in the corrosion products. The elemental contents of the corrosion products of the aluminum electrode in deionized water and in the 850 μ mol L⁻¹ carbon dioxide solution are shown in Table 4. It was found that the corrosion products consisted mainly of aluminum and oxygen. The corrosion products of the aluminum electrode in deionized water and in the carbon dioxide solution should be consistent. The corrosion product of the aluminum electrode in the carbon dioxide solution did not develop either aluminum carbonate or aluminum hydrogen carbonate.

Figure 4. SEM images (a) and Al (b), O (c) and C (d) of EDS elemental analysis for corrosion products of aluminum in 0 μmol L⁻¹ carbon dioxide solution, and SEM images (e) and Al (f), O (g) and C (h) of EDS elemental analysis for the corrosion products of aluminum in the 850 μmol L⁻¹ carbon dioxide solution.

Concentration of carbon dioxide solution	Al	-K	0-	K	C-K	
$(\mu mol L^{-1})$	Wt %	At%	Wt %	At%	Wt %	At%
0	84.51	75.35	12.63	18.90	2.86	5.72
850	86.36	77.10	11.53	18.31	2.11	4.59

Table 4. Elemental contents obtained from the EDS analysis results presented in Figure 4.

3.5. XRD

The XRD spectra of the corrosion products of the aluminum electrodes in carbon dioxide solutions with different concentrations are shown in Fig. 5. For all of the samples, four strong peaks are observed at 39° , 45° , 65° , and 78° that match well to Al (PDF#040-708). Two strong peaks observed at 25° and 63° also correspond well to Al(OH)₃(PDF#26-0025) and Al₂O₃ (PDF#33-0018), respectively. This indicates that the corrosion products of aluminum electrodes in the carbon dioxide solutions and the deionized water contained Al(OH)₃ and Al₂O₃. This was consistent with the corrosion products of aluminum in moist air [24, 25]. As the concentration of the carbon dioxide solution increased, the peaks of the Al(OH)₃ and Al₂O₃ corrosion products at 25° and 63° gradually weakened. The peak of the corrosion product in the 850 µmol L⁻¹ carbon dioxide solution almost disappeared. This indicated that the corrosion rate of aluminum was obtained in the 850 µmol L⁻¹ carbon dioxide solution was better than that in deionized water and that the lowest corrosion rate of aluminum was obtained in the 850 µmol L⁻¹ carbon dioxide solution.

Figure 5. XRD spectrum of the corrosion products on the aluminum surface in the carbon dioxide solution.

3.6. Corrosion mechanism

It is speculated that HCO_3^- ions play a major role in inhibiting aluminum corrosion in carbon dioxide solutions. This paper mainly explores the origin for the inhibition of aluminum corrosion by HCO_3^- ions.

According to the work of Lashgari [26], the following processes are involved in the aluminum corrosion phenomena: damage of oxide/passive film (hydroxylation process) [27, 28], anodic metallic dissolution, and proton reduction. The oxide films are often chemically unstable in aqueous media and dissolve gradually through the interaction with water molecules, corresponding to the so-called hydroxylation process. At the interface region, some particular anions such as Cl^{-} [29, 30] can facilitate the hydroxylation process at the high energy surface active sites. However, HCO_{3}^{-} anion is relatively large and is adsorbed at a long distance and brings fewer water molecules onto the surface-active sites. Therefore, HCO_{3}^{-} ions inhibit aluminum corrosion based on suppressing the dissolution of the oxide film on the aluminum surface.

In the carbon dioxide electrolyte, HCO_3^- generated by carbon dioxide ionization adsorbed on the aluminum surface, eliminating the electric field on the original Al surface. The layer of bicarbonate HCO_3^- becomes electrostatically repulsive, reversing the charge in the oxide film layer for OH⁻, which will suppress the deposition of aluminum on the surface. HCO_3^- continuously gathers on the surface of the electrode to form a shielding layer, shielding the diffusion of aluminum ions in solution. The Al³⁺ of the Helmholtz layer and the aluminum electrodes reach equilibrium of dissolution-precipitation. Because the continuous dissolution of aluminum is suppressed, aluminum corrosion is also suppressed.

4. CONCLUSIONS

The corrosion behavior of aluminum in weakly acidic carbon dioxide solution was studied. The electrolyte was simulated according to the working conditions of HVDC. The corrosion environment of aluminium was also special, such as high temperature, low conductivity and so on. Aluminum corrosion under these specific conditions was rarely reported. The results showed that compared to deionized water, the corrosion of aluminum in the carbon dioxide solution was suppressed. It was found that an aluminum electrode in the 0.84 μ mol L⁻¹ carbon dioxide solution with pH 4.35 had the lowest corrosion rate as observed from its lowest corrosion current, the most positive corrosion potential, and the maximum charge transfer impedance. It was confirmed that HCO₃⁻ plays a major role in inhibiting aluminum corrosion in carbon dioxide solutions. HCO₃⁻ inhibited aluminum corrosion by inhibiting the dissolution of the oxide film on the aluminum surface and by electrostatic repulsion of OH⁻ in solution.

This report focused on the primary reason for the grading electrodes scaling in HVDC valve cooling systems. It was elucidated that reducing the concentration of aluminum ions in the inner cooling water, in other words, inhibiting the corrosion of aluminum, is the fundamental means for solving the scaling problem of the grading electrode. This paper will provide guidance for the future application of aluminum in HCDC systems.

ACKNOWLEDGMENTS

This work was supported by the Programs of the China Southern Power Grid (CGYKJXM20180394, CGYKJXM20160094).

References

- 1. A. Kalair, N. Abas and N. Khan, Renew. Sust. Energ. Rev., 59 (2016) 1653.
- 2. B.V. Eeckhout, D.V. Hertem and M.Reza, Int. T. Electr. Energ., 20 (2010) 661.
- 3. H.Y. Qian, Y.Y. Zhou and W.C. Xu, Adv. Mater. Res., 354 (2012) 1157.
- 4. Y. Wang, Z. Hao and R. Lin, High. Voltage. Eng., 32 (2006) 80.
- 5. D.Y. Li, Y.X. Shi, H.P. Xu, Y. Chen, P. Zhou, X.W. Li, W.X. Feng and S.P. Wang, *Int. J. Electrochem. Sci.*, 13 (2018) 9346.
- 6. J.P. Dasquet, D. Caillard and E. Conforto, *Thin Solid Films*, 371 (2000) 183.
- 7. I.V. Aoki , M.C. Bernard and C.D. Torresi, *Electrochim. Acta*, 46 (2002) 1871.
- 8. J. Zhang, M. Klasky and B.C. Letellier, J. Nucl. Mater., 384 (2009) 175.
- 9. M. Lashgari and A.M. Malek, *Electrochim. Acta*, 55 (2010) 5253.
- 10. Z. Bo, L. Ying and F. Wang, Corros. Sci., 51 (2009) 268.
- 11. E. Mccafferty, Corros. Sci., 45 (2003) 1421.
- 12. S.G. Wang, H.J. Huang, M. Sun, K. Long and Z.D. Zhang, J. Phy. Chem. C, 119 (2015).
- 13. I. Weber, B. Mallick, M. Schild, S. Kareth, R. Puchta and E.R. Van, *Chem. Eur. J.*, 20 (2015) 12091.
- 14. P.O. Jackson, B. Abrahamsson and D. Gustavsson, IEEE. T. Power. Deli., 12 (1997) 1049.
- 15. C.Y. Kong, R.C. Soar and P.M. Dickens, J. Mater. Process. Technol., 146 (2004) 181.
- 16. Solid mineral fuels determination of carbonate carbon content gravimetric method, ISO 925-1997.
- 17. S.M. Moon and S.I. Pyun, Corros. Sci, 39 (1997) 399.
- 18. M.A. Amin, S.S. Abd El Rehim and A.S. El Lithy, Corros. Sci., 52 (2010) 3099.
- 19. S.I. Pyun and S.M. Moon, J. Solid. State. Electrochem., 4 (2000) 267.
- 20. N.D. Nam, W.C. Kim and J.G. Kim, Mater. Corros., 63 (2012) 1004.
- 21. B. Zhang, Y. Li and F.H. Wang, Corros. Sci., 49 (2007) 2071.
- 22. M. Trueba, S.P. Trasatti and D.O. Flamini, Corros. Sci., 63 (2012) 59.
- 23. J. Wysocka, S. Krakowiak and J. Ryl, J. Electroanal. Chem., 778 (2016) 126.
- 24. G.S. Frankel, J. Electrochem. Soc., 29 (1998) 2186.
- 25. T.H. Nguyen and R.T. Foley, J. Electrochem. Soc., 129 (1982) 27.
- 26. M. Lashgari, E. Kianpour and E. Mohammadi, J. Mater. Eng. Perform, 22 (2013) 3620.
- 27. P.J. Eng, T.P. Trainor, G.E. Brown, G.A. Waychunas, M. Newville, S.R. Sutton and M.L. Rivers, *Science*, 288 (2000) 1029.
- 28. E.J. Lee and S.I. Pyun, Corros. Sci., 37 (1995) 157.
- 29. M. Lashgari, *Electrochim. Acta*, 56 (2011) 3322.
- 30. W.M. Carroll, M. Murphy and C.B. Berslin, Corros. Sci., 34 (1993) 1495.

© 2019 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

भारत सरकार Government of India विद्युत मंत्रालय Ministry of Power केन्द्रीय विद्युत प्राधिकरण Central Electricity Authority विद्युत प्रणाली योजना एवं मूल्यांकन - । प्रभाग Power System Planning & Appraisal - I Division

सेवा	में / To		
1.	Chairperson.	2.	Member (Power System),
	Central Electricity Authority		Central Electricity Authority
	Sewa Bhawan, R.K. Puram,		Sewa Bhawan, R.K. Puram,
	New Delhi – 110 066.		New Delhi – 110 066.
3.	Member (Economic & Commercial),	4.	Director (Trans)
	Central Electricity Authority		Ministry of Power
	Sewa Bhawan, R.K. Puram,		Shram Shakti Bhawan,
-	New Delhi – 110 066.		New Delhi-110001.
5.	Chief Operating Officer,	6.	Manoj Kumar Upadhyay
	Central Transmission Utility		Deputy Adviser
	POWERGRID, Saudamini, Plot No. 2,		NITI Aayog, Parliament Street,
	Sector-29, Gurgaon - 122 001.		New Delhi – 110 001.
7.	Shri P. K. Pahwa,	8.	Shri Prabhakar Singh,
	Ex. Member (GO&D), CEA		Ex. Director (Projects), POWERGRID
	428 C, Pocket -2,		D 904, Tulip Ivory, Sector-70,
	Mayur Vihar, Phase -1, Delhi - 110091.		Gurgaon – 122 001.
1		1	

Subject: 6th meeting of "National Committee on Transmission" (NCT) held on 30th September, 2019 – Minutes of Meeting

Sir/Madam,

6th meeting of the "National Committee on Transmission" (NCT) was held on **30th September, 2019 at 3:30 pm** under the chairmanship of Shri P. S. Mhaske, Chairperson, CEA in conference Room of CEA (Chintan), 2nd Floor, Sewa Bhawan, R.K. Puram, New Delhi. Minutes of the meeting are available on CEA website <u>http://www.cea.nic.in</u>. (path to access: Home Page-Wing-Power System-PSPA I-National Committee on Transmission)

Yours faithfully,

(Goutam Roy) Chief Engineer(PSPA-I) & Member Secretary (NCT)

Annexure-A.VI

MVAr MSC, 2x125 MVAr MSR at both Fatehgarh-II and Bhadla–II S/s for voltage stability.

- 4.3.4.2 NCT agreed with the proposal and recommended the following:
 - (a) Transmission scheme "Transmission system strengthening scheme for evacuation of power from solar energy zones in Rajasthan (8.1 GW) under phase II –Part B1 (765/400/220 ICT augmentation at Fatehgarh II and Bhadla-II)" may be considered for implementation through RTM route as it involves upgradation of substation /addition of transformation capacity in under implementation substation.
 - (b) The completion schedule for scheme would be same as the completion schedule of the scheme "Transmission system strengthening for evacuation of power from solar energy zones in Rajasthan (8.1 GW) under phase II –Part B"
 - (c) SECI to invite bids for setting up of Solar RE projects for the entire potential of 2.2 GW in Fatehgarh and 1.05 GW in Bhadla in similar time frame and ensure that entire capacity is bid out to avoid non-utilization of ISTS scheme.

4.3.5 Name of the Scheme: Transmission system strengthening scheme for evacuation of power from solar energy zones in Rajasthan (8.1 GW) under phase-II- Part C

SI.	Scope of the	Capacity /km	Estimated
No.	Transmission Scheme		Cost (in Rs Cr)
1.	Establishment of 765/400 kV, 2x1500 MVA at Sikar – II with 400kV (1x125 MVAR) and 765 kV (2x330 MVAr) bus reactor <i>Future provisions:</i> <i>Space for-</i> <i>765/400kV ICT along with</i> <i>bays -2</i> <i>765 kV line bays along with</i> <i>switchable line reactors –</i> <i>10</i> <i>400 kV line bays along with</i> <i>switchable line reactor –6</i> <i>400/220kV ICT along with</i> <i>bays -4</i> <i>220kV bays -8</i> <i>400kV bus reactor -2</i>	765/400 kV, 1500 MVA ICT – 2 765/400 kV, 500 MVA spare single phase ICT-1 765 kV ICT bays – 2 400 kV ICT bays – 2 765 kV line bays –2 400 kV line bays- 2 125 MVAr, 420 kV bus reactor-1 420 kV reactor bay – 1 330 MVAr, 765 kV bus reactor- 2 765 kV reactor bay- 2 110 MVAR, 765 kV, 1 ph Reactor (spare unit) -1	322
2.	Bhadla-II PS – Sikar-II 765kV D/c line	Length- 310 km	1452
3.	2 no. of 765 kV line bays at Bhadla- II for Bhadla-II PS	765 kV line bays –2	40

6th meeting of National Committee on Transmission held on 30.09.2019 – Minutes Page

		Total	2182
7.	2 no. of 400 kV line bays at Neemrana for Sikar-II – Neemrana 400kV D/c line (Twin HTLS*)	400 kV line bays- 2	18
6.	Sikar-II – Neemrana 400kV D/c line (Twin HTLS*)	Length-140	238
5.	1x240MVAr switchable line reactor for each circuit at Bhadla-II end of Bhadla- II PS – Sikar-II 765kV D/c line	240MVAr, 765 kV reactor- 2 Switching equipment for 765 kV reactor - 2	50
4.	 Sikar-II 765kV D/c line 1x330 MVAr switchable line reactor for each circuit at Sikar-II end of Bhadla-II PS – Sikar-II 765kV D/c line 	330MVAr, 765 kV reactor- 2 Switching equipment for 765 kV reactor - 2	62

*with minimum capacity of 2200 MVA on each circuit at nominal voltage

Note:

- *i.* Powergrid to provide space for 2 no of 765 kV bays at Bhadla II and space for 2 no of switchable line reactors at Bhadla II substation
- ii. Powergrid to provide space for 2 no of 400 kV bays each at Neemrana
- *iii.* The line lengths mentioned above are approximate as the exact length shall be obtained after the detailed survey
- 4.3.5.1 CEA stated that the scheme "Transmission system strengthening scheme for evacuation of power from solar energy zones in Rajasthan (8.1 GW) under phase II –Part C" has been planned to enable the evacuation of RE power from Ramgarh, Fatehgarh and Bhadla SEZs under phase II.
- 4.3.5.2 NCT agreed with the proposal and recommended the following:
 - (a) Transmission scheme "Transmission system strengthening scheme for evacuation of power from solar energy zones in Rajasthan (8.1 GW) under phase II –Part C" may be considered for implementation through TBCB route
 - (b) SECI to invite bids for setting up of Solar RE projects for the entire potential of 1.9 GW in Ramgarh, 2.2 GW in Fatehgarh and 1.05 GW in Bhadla in similar time frame and ensure that entire capacity is awarded.
 - (e) The implementation time-frame of the transmission schemes associated with Ph-II of 66.5 GW RE integration is December' 2021. However, the implementation time-frame of the transmission scheme associated with solar RE projects in

		DIAMOND CROSSIN	G CASE UPT(O OCTOBER			
			OL	JTAGE	Classificati	i	
CODE	EVENT NO.	ELEMENT NAME	DATE TIME DATE TIME		on/ Category Code	REASON OF OUTAGE	
1	2	3	4	5	6	7	
N1PFTL1	TBCB108 24022	765KV FATEHGARH_2-BHADLA_2 Ckt-I (PFTL)	09-08-2024 18:19	10-08-2024 02:11	LCSD	Shutdown for diamond arrangement of Earthwire and OPGW of ckt -1 & Ckt -2 with upcoming Ckt -3 & ckt -4. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.3(1,2,3) on page no 09.	
N1PFTL1	TBCB108 24030	765KV FATEHGARH_2-BHADLA_2 Ckt-I (PFTL)	10-08-2024 17:33	12-08-2024 00:55	LCSD	Shutdown for diamond arrangement of Earthwire and OPGW of ckt -1 & Ckt -2 with upcoming Ckt -3 & ckt -4. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.3(1,2,3) on page no 09.	
N1PFTL2	TBCB108 24023	765KV FATEHGARH_2-BHADLA_2 Ckt-II (PFTL)	09-08-2024 18:19	10-08-2024 03:12	LCSD	Shutdown for diamond arrangement of Earthwire and OPGW of ckt -1 & Ckt -2 with upcoming Ckt -3 & ckt -4. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no- 4.3.3(1,2,3) on page no 09.	
N1PFTL2	TBCB108 24031	765KV FATEHGARH_2-BHADLA_2 Ckt-II (PFTL)	10-08-2024 17:34	12-08-2024 00:56	LCSD	Shutdown for diamond arrangement of Earthwire and OPGW of ckt -1 & Ckt -2 with upcoming Ckt -3 & ckt -4. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.3(1,2,3) on page no 09.	
N1PFTL1		765 KV BHADLA_2 (PG)-FATEHGARH_II(PG) (PFTL) CKT-1 (PFTL)	10-10-2024 17:00	10-10-2024 23:00	LCSD	for Diamond crossing of OPGW between AP 2/0-3/0 to complete the commissioning work of upcoming 765 KV D/C Bhadla-II-Sikar-II line. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.5 on page no 11-12.	
N1PFTL2		765 KV BHADLA_2 (PG)-FATEHGARH_II(PG) (PFTL) CKT-2 (PFTL)	10-10-2024 17:00	10-10-2024 23:00	LCSD	for Diamond crossing of OPGW between AP 2/0-3/0 to complete the commissioning work of upcoming 765 KV D/C Bhadla-II-Sikar-II line. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.5 on page no 11-12.	
N1PBTL1		765 KV BHADLA_2 (PG)-FATEHGARH_II(PG) (PBTL) CKT-3 (PBTL)	10-10-2024 17:00	10-10-2024 23:00	LCSD	for Diamond crossing of OPGW between AP 2/0-3/0 to complete the commissioning work of upcoming 765 KV D/C Bhadla-II-Sikar-II line. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.5 on page no 11-12.	
N1PBTL2		765 KV BHADLA_2 (PG)-FATEHGARH_II(PG) (PBTL) CKT-4 (PBTL)	10-10-2024 17:00	10-10-2024 23:00	LCSD	for Diamond crossing of OPGW between AP 2/0-3/0 to complete the commissioning work of upcoming 765 KV D/C Bhadla-II-Sikar-II line. Approved in 6th NCT meeting dated 30.09.2019 vide MOM point no-4.3.5 on page no 11-12.	
NR176528		765 KV AJMER-BHADLA_2 (PG) CKT-1 (RTM)	21-10-2024 17:33	22-10-2024 04:49	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	

		DIAMOND CROSSIN	G CASE UPTO	O OCTOBER			
	EVENT		OU'	TAGE	Classificati		
CODE	NO.	ELEMENT NAME	DATE TIME DATE TIME		Category Code	REASON OF OUTAGE	
1	2	3	4	5	6	7	
NR176528		765 KV AJMER-BHADLA_2 (PG) CKT-1 (RTM)	22-10-2024 17:09	23-10-2024 05:33	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176528		765 KV AJMER-BHADLA_2 (PG) CKT-1 (RTM)	23-10-2024 17:23	24-10-2024 00:51	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176528		765 KV AJMER-BHADLA_2 (PG) CKT-1 (RTM)	24-10-2024 17:26	24-10-2024 23:04	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176529		765 KV AJMER-BHADLA_2 (PG) CKT-2 (RTM)	21-10-2024 17:33	22-10-2024 03:06	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176529		765 KV AJMER-BHADLA_2 (PG) CKT-2 (RTM)	22-10-2024 17:10	23-10-2024 05:10	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176529		765 KV AJMER-BHADLA_2 (PG) CKT-2 (RTM)	23-10-2024 17:25	24-10-2024 01:02	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176529		765 KV AJMER-BHADLA_2 (PG) CKT-2 (RTM)	24-10-2024 17:26	24-10-2024 23:10	LCSD	for Diamond crossing of Earth wire as well as OPGW of 765kV D/C Ajmer- Bhadla 2 T/L at Tower number 218-219. Approved in 2nd NRSCT meeting dated 13.11.2018 vide MOM no2.3(v) & 2.3(xxi) on page no. 108 & 109.	
NR176530		400 KV BASSI-SIKAR (PG) CKT-1	26-10-2024 13:23	26-10-2024 21:04	LCSD	for Power Line overhead crossing work of upcoming Sikar II Bhadla II ckt 1 & 2.	
NR176530		400 KV BASSI-SIKAR (PG) CKT-1	27-10-2024 08:27	27-10-2024 20:15	LCSD	for Power Line overhead crossing work of upcoming Sikar II Bhadla II ckt 1 & 2.	
NR176530		400 KV BASSI-SIKAR (PG) CKT-1	28-10-2024 14:22	28-10-2024 20:24	LCSD	for Power Line overhead crossing work of upcoming Sikar II Bhadla II ckt 1 & 2.	

	DIAMOND CROSSING CASE UPTO OCTOBER										
	EVENT		OUT	TAGE	Classificati	REASON OF OUTAGE					
CODE	NO.	ELEMENT NAME	DATE TIME	DATE TIME	Category Code						
1	2	3	4	5	6	7					
NR176530		400 KV BASSI-SIKAR (PG) CKT-2	26-10-2024 13:28	26-10-2024 21:05	LCSD	for Power Line overhead crossing work of upcoming Sikar II Bhadla II ckt 1 & 2.					
NR176530		400 KV BASSI-SIKAR (PG) CKT-2	27-10-2024 08:27	27-10-2024 20:17	LCSD	for Power Line overhead crossing work of upcoming Sikar II Bhadla II ckt 1 & 2.					
NR176530		400 KV BASSI-SIKAR (PG) CKT-2	28-10-2024 14:23	28-10-2024 20:25	LCSD	for Power Line overhead crossing work of upcoming Sikar II Bhadla II ckt 1 & 2.					

Annexure-B.II

		Newsorth	Circuit	Tower	Line		Agen	Agency at		Replaced with		
S.No.	Voltage Level	Name of Line	ID	Configura	Length	O&M by	End-I	End-II	Type of conductor	Remarks	Polymer Insulator	Remarks
1. HV	DC lines											
	NES											
1313 L	INES											
A. POWI	RGRID			D : 1	4700	2014/52 0212						
1	± 800kV	Agra-Bishwanath Chariali Pole-I	1	Bi-pole	1728	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	HVDC capcacity 6000	Partial (11%)	
2	± 800kV	Agra-Bishwanath Chariali Pole-II	2	Bi-pole	1728	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	MW, only two physical	Partial (11%)	
3	± 800kV	Agra-Alipurduar Pole-I	1	Bi-pole	1296*	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	lines	Partial (11%)	
4	± 800kV	Agra-Alipurduar Pole-II	2	Bi-pole	1296*	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing		Partial (11%)	
5	± 800kV	Kurukshetra-Champa Pole-I	1	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	HVDC capcacity 6000	Partial (11%)	
6	± 800kV	Kurukshetra-Champa Pole-II	2	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	MW, only two physical	Partial (11%)	
7	± 800kV	Kurukshetra-Champa Pole-III	3	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	lines	Partial (11%)	
8	± 800kV	Kurukshetra-Champa Pole-IV	4	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	111/12.0	Partial (11%)	
9	± 500kV	Balia-Bhiwadi Pole-I	1	Bi-pole	790	POWERGRID	POWERGRID	POWERGRID	ACSR Quad Bersimis	HVDC capacity 2500	Partial (15%)	
10	± 500kV	Balia-Bhiwadi Pole-II	2	Bi-pole	790	POWERGRID	POWERGRID	POWERGRID		MW	Partial (15%)	
11	± 500kV	Rihand-Dadri Pole-I	1	Bi-pole	815	POWERGRID	POWERGRID	POWERGRID	ACSR Quad Bersimis	HVDC capacity 1500	Partial (62%)	
12	± 500kV	Rihand-Dadri Pole-II	2	Bi-pole	815	POWERGRID	POWERGRID	POWERGRID		MW	Partial (43%)	
B. Adani	Power Ltd (Adam	i Transmission India Ltd.)		D : 1							D	
1	± 500kV	Adani Mundra - Mahindergarh Pole-I	1	Bi-pole	990	ATIL	APL Mundra	ATIL	ACSR Quad Bersimis	HVDC capacity 2500	Partial (43%)	
2	± 500kV	Adani Mundra - Mahindergarh Pole-II	2	Bi-pole	990	ATIL	APL Mundra	AIIL		MVV	Partial (43%)	
2.76	5kV Transmi	ission Line										
ISTS L	NES											
A. POW	ERGRID											
1	765kV	Agra-Aligarh	1	D/C	123	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	LILO of Agra-Gr. Noida	Polymer Insulator	
2	765kV	Aligarh-Gr.Noida	1	D/C	51	POWERGRID	POWERGRID	WUPPTCL	Quad Bersimis	at Aligarh (LILO portion	Polymer Insulator	
3	765kV	Agra-Fatehpur	1	S/C	335	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
4	765kV	Agra-Fatehpur	2	S/C	334	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
5	765kV	Agra-Jhatikara	1	S/C	252	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Polymer Insulator	
6	765kV	Ajmer-Chittorgarh	1	D/C	211	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
7	765kV	Ajmer-Chittorgarh	2	D/C	211	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
										LILO of 765kV D/C		
8	765kV	Ajmer-Bhadla II	1	D/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-1 at	Not Available	
										Bhadla II(PG)		
										LILO of 765kV D/C		
9	765kV	Ajmer-Bhadla II	2	D/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-2 at	Not Available	
										Bhadla II(PG)		
10	765kV	Balia - Lucknow765 (N)	1	S/C	319	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	, <i>, ,</i>	Conventional	
11	765kV	Bikaner - Bhadla	1	D/C	167	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
12	765kV	Bikaner - Bhadla	2	D/C	167	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
13	765kV	Bikaner- Moga	1	D/C	367	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
14	765kV	Bikaner- Moga	2	D/C	367	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
										LILO of 765kV D/C		
15	765kV	Bikaner-Bhadla II	1	D/C	197	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-1 at	Not Available	
										Bhadla II(PG)		
										LILO of 765kV D/C		
16	765kV	Bikaner-Bhadla II	2	D/C	197	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-2 at	Not Available	
										Bhadla II(PG)		
17	765kV	Kanpur(GIS)-Aligarh	1	D/C	322	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	LILO of Kanpur-	Polymer Insulator	
18	765kV	Aligarh-Jhatikara	1	D/C	158	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	Jhatikara at Aligarh	Polymer Insulator	
19	765kV	Jhatikara-Bhiwani (PG)	1	S/C	85	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Polymer Insulator	
20	765kV	Koteshwar(PG)-Meerut	1	S/C	176	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	Earlier charged at	Not Available	
21	765kV	Koteshwar(PG)-Meerut	2	S/C	176	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	400kV	Not Available	
22	765kV	Lucknow-Bareilly	1	S/C	252	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
23	765kV	Meerut-Bhiwani(PG)	1	S/C	174	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (99%)	
-		• • •								•		

24	765kV	Meerut-Gr.Noida	1	S/C	119	POWERGRID	POWERGRID	WUPPTCL	Quad Bersimis	Agra-Meerut LILOed at G. Noida by UPPTCL	Polymer Insulator	
25	765kV	Moga- Bhiwani (PG)	1	S/C	273	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (96%)	
26	765kV	Moga-Meerut	1	S/C	338	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Polymer Insulator	
27	765kV	Orai-Aligarh	1	D/C	331	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
28	765kV	Orai-Aligarh	2	D/C	331	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
29	765kV	Phagi-Bhiwani(PG)	1	S/C	272	POWERGRID	RRVPNL	POWERGRID	Quad Bersimis		Partial (18%)	
30	765kV	Phagi-Bhiwani(PG)	2	S/C	277	POWERGRID	RRVPNL	POWERGRID	Quad Bersimis		Partial (16%)	
31	765kV	Varanasi-Balia	1	S/C	166	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
32	765kV	Varanasi-Fatehpur	1	S/C	223	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	LILO of Gaya (ER)- Fatehpur at Varanasi	Conventional	
33	765kV	Varanasi-Kanpur(GIS)	1	S/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Polymer Insulator	
34	765kV	Varanasi-Kanpur(GIS)	2	S/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Polymer Insulator	
B. PKTSI	L	1				1	1					_
1	765kV	Khetri-Jhatikara	1	D/C	146	PKTSL	PKTSL	POWERGRID	Hexa Zebra		Not Available	
2	765kV	Khetri-Jhatikara	2	D/C	146	PKTSL	PKTSL	POWERGRID	Hexa Zebra		Not Available	
C. PFTL	1			1	1	1	1		1	1		•
1	765kV	Fatehgarh II-Bhadla II	1	D/C	186	PFTL	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
2	765kV	Fatehgarh II-Bhadla II	2	D/C	186	PFTL	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
D. FBTL					I							•
1	765kV	Fatehgarh II-Bhadla	1	D/C	175	FBTL	POWERGRID	POWERGRID	Hexa Zebra	Loop in of 400kV	Polymer Insulator	
2	765kV	Fatehgarh II-Bhadla	2	D/C	175	FBTL	POWERGRID	POWERGRID	Hexa Zebra	Fatehgarh (FBTL)-	Polymer Insulator	
E. BKTL		1										
1	765kV	Bikaner-Khetri	1	D/C	241	BKTL	POWERGRID	PKTSL	Hexa Zebra		Polymer Insulator	
2	765kV	Bikaner-Khetri	2	D/C	241	BKTL	POWERGRID	PKTSL	Hexa Zebra		Polymer Insulator	
F. PAPTI	L				1					1		
1	765kV	Ajmer-Phagi	1	D/C	134	PAPTL	POWERGRID	RRVPNL	Hexa Zebra		Not Available	
2	765kV	Ajmer-Phagi	2	D/C	134	PAPTL	POWERGRID	RRVPNL	Hexa Zebra		Not Available	
G. PASTL												
1	765kV	Aligarh(PG)-SIKAR_2	1	D/C	265	PASTL	PSTL	POWERGRID	Hexa Zebra	Anti theft charged	Not Available	
2	765kV	Aligarh(PG)-SIKAR_2	2	D/C	265	PASTL	PSTL	POWERGRID	Hexa Zebra	from Aligarh(PG) Upto	Not Available	
STATE												
1	765kV	Agra Fatebabad-Ghatampur	1	s/c	229	UPPTCI	UPPTCI	UPPTCI	Quad Bersimis		Not Available	
2	765kV	Agra Fatehabad-Gr. Noida	1	s/c	159	UPPTCL	UPPTCL	UPPTCL	ACSR Quad Bersimis	1	Not Available	
3	765kV	Agra(Fatehbad)-Lalitpur	1	s/c	337				Quad Bersimis		Not Available	
4	765kV	Agra(Fatehbad)-Lalitpur	2	5/C	335	UPPTCL	UPPTCL	LPGCL	Quad Bersimis		Not Available	
5	765kV	AnparaC-AnparaD	1	5/C	3	UPPTCL	LANCO	UPRVUNL	Quad Bersimis		Not Available	
6	765kV	AnparaC-Unnao	1	s/c	409	UPPTCL	LANCO	UPPTCL	Quad Bersimis		Conventional	AnparaB-Unnao shifted to AnparaC and charged at 765kV
7	765kV	AnparaD-Obra_C	1	D/C	53	UPPTCL	UPRVUNL	UPPTCL	Quad Bersimis	After LILO of 765 KV	Not Available	
8	765kV	Obra_C-Unnao	1	D/C	390	UPPTCL	UPRVUNL	UPPTCL	Quad Bersimis	ANPARA D-UNNAO LINE	Not Available	
9	765kV	Bara-Mainpuri	1	S/C	377	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis		Not Available	
10	765kV	Gr. Noida-Meerut_PMSTL	1	S/C	100	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	After LILO of 765 KV	Not Available	
11	765kV	Meerut_PMSTL-Hapur	1	S/C	37	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	GREATER NOIDA	Not Available	
12	765kV	Gr. Noida-Jawaharpur	1	D/C	162	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	After LILO of 765 KV	Not Available	
13	765kV	Jawaharpur-Mainpuri	1	D/C	40	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	MAINPURI(SEUPPTCL)-	Not Available	
14	765kV	Hapur(UP)-Rampur_PRSTL (UP)	1	s/c	230	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	LILO of 765kV Hapur- Ghatampur at Rampur. LILO portion is on D/C tower 2.5km 5towers	Not Available	

												-
15	765kV	Mainpuri(UP)-Hapur(UP)	1	S/C	217	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis		Not Available	
B. RRVI	PNL					1	1	1	1	1		•
1	765kV	Anta-Phagi	1	S/C	214	RRVPNL	RRVPNL	RRVPNL	Quad Bersimis		Not Available	
2	765kV	Anta-Phagi	2	S/C	212	RRVPNL	RRVPNL	RRVPNL	Quad Bersimis		Not Available	
3.76	5kV Transmi	ssion Line charged at 400kV										
ISTS L	INES											
A. POW	/ERGRID											
1		Kishenpur-Moga	1	S/C	275	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (1%)	
2		Kishenpur-Moga	2	S/C	287	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (1%)	
3	765kV charged at	Tehri-Koteshwar(PG)	1	S/C	15	POWERGRID	THDC	POWERGRID	Quad Bersimis		Conventional	
4	400kV	Tehri-Koteshwar(PG)	2	S/C	17	POWERGRID	THDC	POWERGRID	Quad Bersimis		Conventional	
5		Rihand-Vindhyachal Pool	1	S/C	31	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Not Available	
6		Rihand-Vindhyachal Pool	2	S/C	31	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Not Available	
4 40		ansmission Line										-
1313 L	IINES											
A. POW	/ERGRID			- /-								
1	400kV	Abdullapur- Bawana	1	D/C	167	POWERGRID	POWERGRID	DTL	Triple Snowbird		Partial (99%)	
										LILO of Abdullapur-		LILO of Abdullapur-
2	400kV	Abdullapur- Deepalpur	1	D/C	141	POWERGRID	POWERGRID	KT Jhajjar	Triple Snowbird	Bawana one ckt at	Partial (99%)	Bawana one ckt at
										Deepalpur by Jhajjar KT		Deepalpur
										,"		
з	400kV	Abdullapur-Kurukshetra	1	D/C	52	POWERGRID	POWERGRID	POWERGRID	Triale Casultind Truin	LILO of Abdullapur-Sonipat line	Polymer Insulator	LILO of Abdullapur-
,	40000		-	5/0	52	TOWERGRAD	TOWERGRAD	TOWERGRAD		at Kurukshetra	r otymer modultor	Sonepat ckts at
4	400kV	Abdullapur-Kurukshetra	2	D/C	52	POWERGRID	POWERGRID	POWERGRID	HILS IOF LILU	LILO of Abdullapur-Sonipat line	Polymer Insulator	Kurukshetra
5	400kV	Agra-Agra(Fatehbad)	1	S/C	45	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO of Agra(PG)-Agra(UP) ckt-	Polymer Insulator	
6	400kV	Agra(UP)-Agra(Fatehbad)	1	s/c	56	POWERGRID	UPPTCL	UPPTCL	Twin Moose	2 at Fatehabad (765kV Agra	Polymer Insulator	
7	400kV	Agra-Agra(UP)	1	D/C	30	POWERGRID	POWERGRID	UPPTCL	Twin Moose	UF)	Polymer Insulator	
8	400kV	Agra-Ballabgarh	1	S/C	181	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
~	400114	A Di		6/6	244	DOMEDODID	DOWEDCDID	DOWEDCDID	Turke Manage			Planned for insulator
9	400KV	Agra-Bassi		S/C	211	POWERGRID	POWERGRID	POWERGRID	I win Woose		Conventional	replacement in 321nd
												towers under NR3
10	400kV	Agra-Bhiwadi	1	D/C	209	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
11	400kV	Agra-Bhiwadi	2	D/C	209	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
12	400107	Agra Jainur South	1	D/C	254			DOWERCBID	Twin Mooro	LILO of Agra-Bassi D/C	Portial (406)	
12	400KV	Agra-Jaipur South	1	D/C	254	POWERGRID	POWERGRID	POWERGRID	I win woose	at Jaipur South	Partial (4%)	LILO of Agra-Bassi D/0
12	40060	Agra Jaipur South	2	D/C	254				Twin Mooso	LILO of Agra-Bassi D/C	Partial (4%)	at Jaipur South
15	40000		2	D/C	234	TOWERGRID	TOWERGRID	TOWERGRID	T WIT WIO 03C	at Jaipur South	1 4144 (470)	
14	400kV	Agra-Sikar	1	D/C	386	POWERGRID	POWERGRID	POWERGRID	Twin Moose	-	Partial (3%)	
15	400kV	Agra-Sikar	2	D/C	386	POWERGRID	POWERGRID	POWERGRID	Twin Moose	-	Partial (3%)	
16	400kV	Ajmer-Ajmer(PG)	1	D/C	66	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
17	400kV	Ajmer-Ajmer(PG)	2	D/C	66	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
18	400kV	Allahabad-Fatehpur	3	S/C	154	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Allanabad-Kanpur one ckt at Fatehpur	Polymer Insulator	
19	400kV	Allahabad-Fatehpur	1	D/C	140	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Lilo of Allahabad-Mainpuri (PG)	Conventional	
		· · · · · · · · · · · · · · · · · · ·	-	-,-						D/C at Fatehpur Lilo of Allahabad-Mainpuri (PG)		
20	400kV	Allahabad-Fatehpur	2	D/C	140	POWERGRID	POWERGRID	POWERGRID	Twin Moose	D/C at Fatehpur	Conventional	
21	400kV	Allahabad-Varanasi	1	D/C	99	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Allahabad-Sarnath shifted	Conventional	
~ ~ ~	40000					1 OWENGIND	1 O WENGIND		I WIII WIOO3e	from Sarnath to varanasi	Somentionat	
22	400kV	Allahabad-Kanpur	1	S/C	225	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
23	400kV	Allahabad-Kanpur(New 765)	1	D/C	240	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
24	400kV	Allahabad-Kanpur(New 765)	2	D/C	240	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
25	400kV	Allahabad-Meja(NTPC)	1	D/C	28	POWERGRID	POWERGRID	MUNPL	Twin Moose		Polymer Insulator	hetween NTPC and
26	400kV	Allahabad-Meja(NTPC)	2	D/C	28	POWERGRID	POWERGRID	MUNPL	Twin Moose		Polymer Insulator	

27	400kV	Amritsar-Jalandhar	1	S/C	60	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
28	400kV	Amritsar-Jalandhar	2	D/C	71	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of 400kV Amritsar- Hamirpur at Jalandhar
29	400kV	Amritsar-ParbatiPooling (Banala)	1	D/C	251	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (49%)	
30	400kV	Auraiya-Agra	1	D/C	166	POWERGRID	NTPC	POWERGRID	Twin Moose		Partial (86%)	
31	400kV	Auraiya-Agra	2	D/C	166	POWERGRID	NTPC	POWERGRID	Twin Moose		Partial (90%)	
32	400kV	Baglihar II-Kishenpur	1	s/c	130	POWERGRID	JKSPDCL	POWERGRID	Twin Moose	LILO of 400kV Kishenpur-New Wanpoh ckt-2 at Baglihar. LILO portion is of JK PDD	Conventional	
33	400kV	Baghlihar II-New Wanpoh	1	S/C	130	POWERGRID	JKSPDCL	POWERGRID	Twin Moose		Not Available	
34	400kV	Bagpat-Kaithal	1	D/C	154	POWERGRID	POWERGRID	POWERGRID	Quad Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
35	400kV	Bagpat-Kaithal	2	D/C	154	POWERGRID	POWERGRID	POWERGRID	Quad Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
36	400kV	Bagpat-Saharanpur	1	D/C	121	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Partial (41%)	
37	400kV	Bagpat-Dehradun	1	D/C	165	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Partial (40%)	
38	400kV	Bahadurgarh-Kabulpur	1	S/C	42	POWERGRID	POWERGRID	HVPNL	Twin Moose		Polymer Insulator	LILO of Bahadurgarh- Bhiwani at Kabulpur
39	400kV	Bahadurgarh-Sonepat	1	D/C	53	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
40	400kV	Bahadurgarh-Sonepat	2	D/C	53	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
41	400kV	Balia-Mau	1	D/C	9	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
42	400kV	Balia-Sohawal	1	D/C	229	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Balia- LUCKNOW D/C at Sohawal	Conventional	LILO of Balia-Lucknow (316 KM) D/C at Sohawal
43	400kV	Balia-Sohawal	2	D/C	229	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Balia- LUCKNOW D/C at Sohawal	Conventional	LILO of Balia-Lucknow (316 KM) D/C at Sohawal
44	400kV	Ballabgarh-Tughlakabad	1	M/C	40	DTL	POWERGRID	POWERGRID	HTLS INVAR (LILO	Tower is quad circuit tower	Polymer	
45	400kV	Ballabgarh-Tughlakabad	2	M/C	40	DTL	POWERGRID	POWERGRID	(before LILO)	Tower is quad circuit tower	Polymer	
46	400kV	Ballabhgarh-Gurgaon	1	S/C	43	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
47	400kV	Ballabhgarh-Maharanibagh	1	D/C	61	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	Bypassed at Maharanibagh to form Dadri-Ballabgarh	Polymer Insulator	
48	400kV	Ballabhgarh-Nawada	1	D/C	13	POWERGRID	POWERGRID	HVPNL	Quad Bersimis		Polymer Insulator	Ballabhgarh-Gnoida LILOed at Nawada (Faridabad,Haryana)
49	400kV	Bareilly PG-Moradabad	1	D/C	93	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Partial (3%)	
50	400kV	Bareilly PG-Rampur_PRSTL	1	s/c	40	POWERGRID	POWERGRID	UPPTCL	Twin Moose	After LILO of 400 KV BAREILLY(PG)- MORADABAD(UPPTCL) CIRCUIT-II at RAMPUR(PRSTL)	Not Available	
51	400kV	Rampur_PRSTL-Moradabad	1	s/c	57	POWERGRID	UPPTCL	UPPTCL	Twin Moose	After LILO of 400 KV BAREILLY(PG)- MORADABAD(UPPTCL) CIRCUIT-II at RAMPUR(PRSTL)	Not Available	
52	400kV	Bareilly PG-Bareilly (765kV)	1	D/C	2	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Conventional	
53	400kV	Bareilly PG-Bareilly (765kV)	2	D/C	2	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Conventional	

54	400kV	Bareilly PG(765kV)-Kashipur	1	D/C	101	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (90%)	
55	400kV	Bareilly PG(765kV)-Kashipur	2	D/C	101	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (90%)	
56	400kV	Bassi-Bhiwadi	2	S/C	220	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
57	400kV	Bassi-Heerapura	1	D/C	48	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Polymer Insulator	
58	400kV	Bassi-Heerapura	2	D/C	49	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Polymer Insulator	
59	400kV	Bassi-Kotputli	1	S/C	106	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
60	400kV	Bassi-Phagi	1	D/C	48	POWERGRID	POWERGRID	RRVPNL	Quad Moose		Partial (26%)	
61	400kV	Bassi-Phagi	2	D/C	48	POWERGRID	POWERGRID	RRVPNL	Quad Moose		Partial (26%)	
62	400kV	Bassi-Sikar	1	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (16%)	
63	400kV	Bassi-Sikar	2	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (17%)	
64	400kV	Bawana(CCGT)-Bahadurgarh	1	D/C	49	POWERGRID	DTL/Pragati CCGT	POWERGRID	Twin Moose		Polymer Insulator	
65	400kV	Bhadla-Bhadla(PG)	1	D/C	27	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
66	400kV	Bhadla-Bhadla(PG)	2	D/C	27	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
67	400kV	Bhadla-Bhadla II	1	D/C	52	POWERGRID	POWERGRID	POWERGRID	Twin HTLS+Hexa Zebra	48.309KM Twin HTLS conductor of	Not Available	
68	400kV	Bhadla-Bhadla II	2	D/C	52	POWERGRID	POWERGRID	POWERGRID	Twin HTLS+Hexa Zebra	POWERGRID and 3.73 KM HEXA Zebra of FBTL	Not Available	
69	400kV	Bhinmal-Kankroli	1	D/C	202	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Bhinmal to form 400kV Kankroli Zerda ckt-2	Polymer Insulator	
70	400kV	Bhiwadi-Gurgaon	1	S/C	83	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
71	400kV	Bhiwadi-Hissar	1	S/C	212	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
72	400kV	Bhiwadi-Hissar	2	D/C	144	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of Bhiwadi-Moga both ckts at Hisar
73	400kV	Bhiwadi-Hissar	3	D/C	144	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
74	400kV	Bhiwadi-NeemranaPG	1	D/C	48	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
75	400kV	Bhiwadi-NeemranaPG	2	D/C	48	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
76	400kV	Bhiwani BBMB - Hissar	1	s/c	35	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Bhiwani BBMB- Fatehabad	Polymer Insulator	
77	400kV	Bhiwani (PG) - Hissar	1	s/c	64	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Moga- Bhiwani(PG)	Polymer Insulator	LILO of Bawana-Hisar (132KM) at Bhiwani PG
78	400kV	Bhiwani (PG) - Hissar	2	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bhiwani/PG) to form	Polymer Insulator	
79	400kV	Bhiwani (PG) - Hissar	3	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Mahindergarh(ATIL)	Polymer Insulator	
80	400kV	Bhiwani PG - Jind	1	D/C	82	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
81	400kV	Bhiwani PG - Jind	2	D/C	82	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
82	400kV	Bhiwani PG- BawanaCCGT	1	D/C	97	POWERGRID	POWERGRID	DTL/ CCGT	Twin Moose		Polymer Insulator	LILO of Bawana-Hisar (132KM) at Bhiwani PG
83	400kV	Bhiwani PG- Bhiwani BBMB	1	s/c	34	POWERGRID	POWERGRID	BBMB	Twin Moose		Polymer Insulator	LILO of Bhiwani (BBMB)- Bahadurgarh (84km) at Bhiwani (PG)
84	400kV	Bhiwani PG-Kabulpur	1	S/C	48	POWERGRID	POWERGRID	HVPNL	Twin Moose		Polymer Insulator	LILO of Bahadurgarh- Bhiwani at Kabulpur
85	400kV	Bikaner_2 (PBTSL)-Bikaner(PG)	1	D/C	43	POWERGRID	PBTSL	POWERGRID	Quad Moose		Not Available	
86	400kV	Bikaner_2 (PBTSL)-Bikaner(PG)	2	D/C	43	POWERGRID	PBTSL	POWERGRID	Quad Moose		Not Available	
87	400kV	Chamba pool - Jalandhar	1	D/C	162	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (48%)	
88	400kV	Chamba pool - Jalandhar	2	D/C	162	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (48%)	
89	400kV	Chamera-II - Chamba Pool	1	S/C	0.38	POWERGRID	NHPC	POWERGRID	Twin Moose		Conventional	Two tower is S/C and one tower is D/C
90	400kV	Chamera-II-Chamera-I	1	S/C	36	POWERGRID	NHPC	NHPC	Twin Moose		Conventional	
91	400kV	Chamera-II-Kishenpur	1	S/C	135	POWERGRID	NHPC	POWERGRID	Twin Moose		Conventional	

92	400kV	Chamera-I-Jalandhar	1	D/C	152	POWERGRID	NHPC	POWERGRID	Twin ACAR		Partial (43%)	
93	400kV	Chamera-I-Jalandhar	2	D/C	152	POWERGRID	NHPC	POWERGRID	Twin ACAR		Partial (43%)	
94	400kV	Chittorgarh-Chittorgarh(PG)	1	D/C	49	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
95	400kV	Chittorgarh-Chittorgarh(PG)	2	D/C	49	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
96	400kV	Chittorgarh-Kankroli	1	D/C	71	POWERGRID	RRVPNL	POWERGRID	Twin Moose		Polymer Insulator	LILO of 400 kV Rapp C- Kankroli at Chhitorgarh
97	400kV	Dadri NCTPP-G. Noida	1	D/C	13	POWERGRID	NTPC	UPPCL	Quad Bersimis		Polymer Insulator	
98	400kV	Dadri NCTPP-Maharanibagh	1	D/C	54	POWERGRID	NTPC	POWERGRID	Quad Bersimis	Bypassed at Maharanibagh to form Dadri-Ballabgarh	Polymer Insulator	
99	400kV	Dadri NCTPP-Kaithal	1	S/C	213	POWERGRID	NTPC	POWERGRID	Twin Moose	LILO of Dadri- Malerkotla at Kaithal	Polymer Insulator	
100	400kV	Dadri NCTPP-Mandola	1	D/C	46	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Polymer Insulator	
101	400kV	Dadri NCTPP-Mandola	2	D/C	46	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Polymer Insulator	
102	400kV	Dadri NCTPP-Muradnagar New	1	s/c	33	POWERGRID	NTPC	UPPTCL	Twin Moose		Polymer Insulator	Line shifted from Muradnagar to Muradnagar New (UPPTCL)
103	400kV	Dadri NCTPP-Panipat	1	S/C	112	POWERGRID	NTPC	BBMB	Twin Moose		Polymer Insulator	
104	400kV	Dadri NCTPP-Panipat	2	S/C	117	POWERGRID	NTPC	BBMB	Twin Moose		Polymer Insulator	
105	400kV	Deepalpur-Bawana	1	D/C	26	POWERGRID	KT-Jhajjar	DTL	Triple Snowbird	LILO of 400kV Bawana- Abdullapur one circuit at Deepalpur by Jhajjar KT	Polymer Insulator	
106	400kV	Dehradun-Abdullapur	1	D/C	89	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
107	400kV	Dehradun-Abdullapur	2	D/C	89	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
108	400kV	Dulhasti-Kishenpur	1	S/C	120	POWERGRID	NHPC	POWERGRID	Quad Moose		Conventional	
109	400kV	Dulhasti-Kishenpur	2	S/C	120	POWERGRID	NHPC	POWERGRID	Quad Moose		Conventional	
110	400kV	Dwarka-Jhatikara	1	S/C	18	POWERGRID	POWERGRID	POWERGRID	Twin HTLS	Aiter LILO of 400KV	Not Available	
111	400kV	Dwarka-Bamnauli	1	S/C	10	POWERGRID	POWERGRID	DTL	Twin HTLS	Jnatikara-Bamnou-Lat	Not Available	
112	400kV	Fatehbad PG-Hissar	1	D/C	89	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Bhiwani BBMB- Fatehabad	Polymer Insulator	
113	400kV	Fatehpur-Kanpur	1	S/C	100	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILU of Singrauli-
114	400kV	Fatehpur-Kanpur	2	S/C	107	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Kanpur to form Fatehpur-Panki	Partial (64%)	LILO of Allahabad- Kanpur one ckt at Fatehpur
115	400kV	Kanpur-Panki	1	S/C	6	POWERGRID	POWERGRID	UPPTCL	Twin Moose	Bypassed at Kanpur to	Polymer Insulator	
116	400kV	Kanpur-Panki	2	S/C	6	POWERGRID	POWERGRID	UPPTCL	Twin Moose	form Fatehpur-Panki	Polymer Insulator	
117	400kV	Fatehpur-Mainpuri	1	D/C	260	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Allahabad- Mainpuri (363 KM) D/C at Fatehpur Series compensated line (Degree of comp 40%)
118	400kV	Fatehpur-Mainpuri	2	D/C	260	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
119	400kV	G.Noida-Nawada	1	D/C	30	POWERGRID	UPPTCL	HVPNL	Quad Bersimis	Lilo of Ballabgarh- G.Noida at Nawada	Polymer Insulator	Ballabhgarh-Gnoida LILOed at Nawada (Faridabad,Haryana)
120	400kV	Gorakhpur PG-Gorakhpur UP	1	D/C	46	POWERGRID	POWERGRID	UPPCL	Twin Moose		Polymer Insulator	Partial Planning has been completed
121	400kV	Gorakhpur PG-Gorakhpur UP	2	D/C	46	POWERGRID	POWERGRID	UPPCL	Twin Moose		Polymer Insulator	Partial Planning has been completed

122	400kV	Gorakhpur PG-Lucknow PG	1	D/C	264	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (3%)	At crossing
123	400kV	Gorakhpur PG-Lucknow PG	2	D/C	264	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (3%)	At crossing
124	400kV	Gorakhpur PG-Basti (UP)	1	D/C	117	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO of 400kV Gorakhpur PG- Lucknow PG ckt-4 at Basti (UP). LILO portion is of UP	Not Available	
125	400kV	Gorakhpur PG-Basti (UP)	2	D/C	108	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO of 400kV Lucknow Gorakhpur-3 at Basti. LILO portion is of UP	Not Available	
126	400kV	Basti (UP)-Lucknow PG	1	D/C	204	POWERGRID	UPPTCL	POWERGRID	Twin Moose		Not Available	
127	400kV	Gurgaon-Sohna Road	1	D/C	7	POWERGRID	POWERGRID	GPTL	Quad Moose	LILO OF 400KV Guigaon	Not Available	
128	400kV	Gurgaon-Sohna Road	2	D/C	7	POWERGRID	POWERGRID	GPTL	Quad Moose	Pood by CDTI	Not Available	
129	400kV	Hamirpur-ParbatiPooling (Banala)	1	D/C	77	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Amritsar- Banala-1 at Hamirpur
130	400kV	Jaipur South-Bassi	1	D/C	37	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Agra-Bassi D/C at Jaipur South	Polymer Insulator	LILO of Agra-Bassi D/C at Jaipur South
131	400kV	Jaipur South-Bassi	2	D/C	37	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Agra-Bassi D/C at Jaipur South	Polymer Insulator	
132	400kV	Jaipur South-Kota	1	D/C	180	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
133	400kV	Jaipur South-RAPP D	1	D/C	228	POWERGRID	POWERGRID	NPCIL	Twin Moose		Not Available	
134	400kV	Jalandhar-Nakodar	1	D/C	42	POWERGRID	POWERGRID	PSTCL	Quad Moose		Polymer Insulator	
135	400kV	Jalandhar-Hamirpur	1	D/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (43%)	LILO of 400kV Amritsar- Hamirpur at Jalandhar
136	400kV	Kaithal-Hissar	1	D/C	113	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		LILO of Patiala-Hissar at Kaithal	
137	400kV	Kaithal-Hissar	2	D/C	113	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		LILO of Patiala-Hissar at Kaithal	
138	400kV	Kaithal-Malerkotla	1	S/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
139	400kV	Kankroli-Jodhpur	1	S/C	188	POWERGRID	POWERGRID	RRVPNL	Twin HTLS		Conventional	
140	400kV	Kanpur-Agra	1	S/C	240	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
141	400kV	Kanpur-Auraiya	1	D/C	73	POWERGRID	POWERGRID	NTPC	Twin Moose		Conventional	
142	400kV	Kanpur-Auraiya	2	D/C	73	POWERGRID	POWERGRID	NTPC	Twin Moose		Conventional	
143	400kV	Kanpur-Ballabgarh	1	s/c	386	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	*Series Compensated,Ckt 1- 35%, Ckt-2 & 3-40%
144	400kV	Kanpur-Ballabgarh	2	D/C	371	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	*Series Compensated,Ckt 1- 35%, Ckt-2 & 3-40%
145	400kV	Kanpur-Ballabgarh	3	D/C	371	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	*Series Compensated,Ckt 1- 35%, Ckt-2 & 3-40%
146	400kV	Kanpur-Kanpur(GIS)	1	D/C	21	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
147	400kV	Kanpur-Kanpur(GIS)	2	D/C	21	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
148	400kV	Kanpur(GIS)-Lucknow(765)	1	D/C	160	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
149	400kV	Kanpur(GIS)-Lucknow(765)	2	D/C	160	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
150	400kV	Kishenpur-NewWanpoh	1	D/C	130	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
151	400kV	Kishenpur-NewWanpoh	3	D/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
152	400kV	Kishenpur-NewWanpoh	4	D/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
153	400kV				35	POWERGRID			I WIN MOOSE			
154	400kV	Kisnenpur-Samba	2		35				I win Moose		Conventional	
155	400KV	Kota-Wierta			250	POWERGRID	POWERGRID	KKVPINL	i win ivioose		Conventional	

156	400kV	Kotputli-Bhiwadi	1	S/C	132	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of Bassi-Bhiwadi- 2 at Kotputli
157	400kV	Kurukshetra-Jind	1	D/C	103	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
158	400kV	Kurukshetra-Jind	2	D/C	103	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
159	400kV	Kurukshetra-Sonipat	1	D/C	125	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird (Twin		Partial (99%)	LILO OF ADdullapr-
160	400kV	Kurukshetra-Sonipat	2	D/C	125	POWERGRID	POWERGRID	POWERGRID	HTLS for LILOportion)	Sonipat line at	Partial (99%)	Cononat alite at
161	400kV	Kurukshetra(PG)-Dhanansu(PS)	1	D/C	165	POWERGRID	POWERGRID	PSTCL	Quad Moose	LILUUTAOUKV	Polymer Insulator	LILO portion to be
162	400kV	Dhanansu(PS)-Jalandhar(PG)	1	D/C	106	POWERGRID	PSTCL	POWERGRID	Quad Moose	Kurukshetra-Jalandhar	Polymer Insulator	checked
163	400kV	Kurukshetra-Nakodar	1	D/C	234	POWERGRID	POWERGRID	PSTCL	Quad Moose	/LILO portion is of	Polymer Insulator	
164	400kV	Lucknow-Basti	1	D/C	203	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Not Available	
165	400kV	Lucknow-Basti	2	D/C	203	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Not Available	
166	400kV	Lucknow PG-Lucknow UP	1	S/C	63	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
167	400kV	Lucknow PG-Unnao	1	D/C	74	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
168	400kV	Lucknow PG-Unnao	2	D/C	74	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
169	400kV	Lucknow UP-Bareilly PG	1	S/C	279	POWERGRID	UPPTCL	POWERGRID	Twin Moose		Conventional	
170	400kV	765 Lucknow (PG) - Lucknow (PG)	1	D/C	3	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
171	400kV	765 Lucknow (PG) - Lucknow (PG)	2	D/C	3	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
172	400kV	LucknowPG-Sohawal	1	D/C	98	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Balia-Lucknow (316 KM) D/C at Sohawal
173	400kV	LucknowPG-Sohawal	2	D/C	98	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
174	400kV	Lucknow PG-Shahjahanpur	1	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (10%)	
175	400kV	Lucknow PG-Shahjahanpur	2	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (10%)	
176	400kV	Lucknow-Jehta	1	D/C	32	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO OF 400KV LUCKNOW	Not Available	
177	400kV	Lucknow-Jehta	2	D/C	32	POWERGRID	POWERGRID	UPPTCL	Twin Moose	Unnao DC at Jenta	Not Available	
178	400kV	Ludhiana-Jalandhar	1	S/C	85	POWERGRID	POWERGRID	POWERGRID	Twin Moose	(IID) III () portion is of	Polymer Insulator	
179	400kV	Ludhiana-Malerkotla	1	S/C	36	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
180	400kV	Ludhiana-Patiala	1	D/C	76	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
181	400kV	Ludhiana-Patiala	2	D/C	76	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
182	400kV	Mainpuri-Ballabgarh	1	D/C	236	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
183	400kV	Mainpuri-Ballabgarh	2	D/C	236	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
184	400kV	Malerkotla-Patiala	1	S/C	62	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
185	400kV	Manesar- Sohna Road	1	D/C	17			GPTI	Ouad Moose	LILO OF 400KV Gurgaon-	Not Available	
105	400kV	Manesar Sohna Road	2	D/C	17			CDTL	Quad Moose	Manesar D/C at Sohna	Not Available	-
100	4006 V		2		17	POWERGRID	POWERGRID	GPIL	Quau woose	Road by GPTI	NUL AVAIIADIE	
187	400kV	Mandola-Maharanibagh	1	towers are M/C)	29	POWERGRID	POWERGRID	POWERGRID	Twin HTLS	After LILO of 400KV	Not Available	
188	400kV	Mandola-Maharanibagh	2	D/C (LILO towers are M/C)	29	POWERGRID	POWERGRID	POWERGRID	Twin HTLS	Mandola-Bawana D/C Lines at 400KV Maharanibagh(PG)	Not Available	
189	400kV	Maharanibagh-Bawana	1	D/C	29	POWERGRID	POWERGRID	DTL	Twin HTLS		Not Available	
190	400kV	Maharanibagh-Bawana	2	D/C	29	POWERGRID	POWERGRID	DTL	Twin HTLS		Not Available	
191	400kV	Meerut-Bagpat	1	D/C	71	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
192	400kV	Meerut-Bagpat	2	D/C	71	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
193	400kV	Meerut-Mandola	1	D/C	60	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
194	400kV	Meerut-Mandola	2	D/C	60	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
195	400kV	Meerut-Muzzafarnagar	1	S/C	37	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Polymer Insulator	
196	400kV	Moga-Fatehabad	1	D/C	179	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
197	400kV	Moga-Hissar	1	D/C	209	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Moga- Bhiwani(PG)	Polymer Insulator	

198	400kV	Moga-Hissar	2	D/C	206	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of Bhiwadi-Moga both ckts at Hisar
199	400kV	Moga-Hissar	3	D/C	206	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
200	400kV	Moga-Jalandhar	1	D/C	85	POWERGRID	POWERGRID	POWERGRID	Twin ACAR		Polymer Insulator	
201	400kV	Moga-Jalandhar	2	D/C	85	POWERGRID	POWERGRID	POWERGRID	Twin ACAR		Polymer Insulator	
202	400kV	Muradnagar-Hapur	1	S/C	28	POWERGRID	UPPTCL	UPPTCL	Twin Moose	Muradaadaa LIL Ood at	Not Available	
203	400kV	Moradabad-Hapur	2	S/C	109	POWERGRID	UPPTCL	UPPTCL	Twin Moose	Hanur: LILO portion of	Not Available	
204	400kV	Nallagarh-Koldam	1	D/C	46	POWERGRID	POWERGRID	NTPC	Quad Moose		Conventional	Koldam to Parbati
205	400kV	Nallagarh-Patiala	1	D/C	94	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
206	400kV	Nallagarh-Patiala	2	D/C	94	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
207	400kV	Nathpa Jhakri-Gumma	1	D/C	55	POWERGRID	SJVNL	HPPTCL	Triple Snowbird		Not Available	
208	400kV	Nathpa Jhakri-Gumma	2	D/C	55	POWERGRID	SJVNL	HPPTCL	Triple Snowbird	Banchkula line at	Not Available	
209	400kV	Gumma-Panchkula	1	D/C	112	POWERGRID	HPPTCL	POWERGRID	Triple Snowbird	Gumma	Not Available	
210	400kV	Gumma-Panchkula	2	D/C	112	POWERGRID	HPPTCL	POWERGRID	Triple Snowbird	Guinna	Not Available	
211	400kV	Nathpa Jhakri-RampurHEP	1	D/C	21	POWERGRID	SJVNL	SJVNL	Triple Snowbird	Nathpa Jhakri-	Conventional	LILO OF JNAKH-INALAgarn-
212	400kV	Nathpa Jhakri-RampurHEP	2	D/C	21	POWERGRID	SJVNL	SJVNL	Triple Snowbird	Nallagarn LILOed at	Conventional	
213	400kV	NeemranaPG-Manesar	1	D/C	67	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bambur HEP	Polymer Insulator	
214	400kV	NeemranaPG-Manesar	2	D/C	67	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
215	400kV	NeemranaPG-Babai	1	D/C	85	POWERGRID	POWERGRID	RRVPNL	Twin Moose	LILO PORTION IF OF NRSS36(B), LILO of 400kV Neemrana-Sikar 1 at Babai	Not Available	LILO of 400kV Neemrana-Sikar at Babai by NRSSXXXVI (Essel group): Earlier 29% of Neemrana- Sikar PG
216	400kV	NeemranaPG-Sikar	2	D/C	176	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
217	400kV	NewWanpoh-Wagoora	1	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
218	400kV	NewWanpoh-Wagoora	2	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
219	400kV	Orai(PG)-Orai	1	D/C	42	POWERGRID	POWERGRID	UPPTCL	Quad Moose		Not Available	
220	400kV	Orai(PG)-Orai	2	D/C	42	POWERGRID	POWERGRID	UPPTCL	Quad Moose		Not Available	
221	400kV	Panchkula -Abdullapur	1	D/C	63	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	LILO of Jhakri- Abdullapur at Panchkula
222	400kV	Panchkula -Abdullapur	2	D/C	63	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	LILO OF JNAKN-
223	400kV	Patiala-Panchkula	1	D/C	65	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
224	400kV	Patiala-Panchkula	2	D/C	65	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
225	400kV	Patiala-Patran	1	D/C	79	POWERGRID	POWERGRID	PTCL	Triple Snowbird	LILO of 400kV D/C	Polymer Insulator	LILO of 400 kV Kaithal-
226	400kV	Patiala-Patran	2	D/C	79	POWERGRID	POWERGRID	PTCL	Triple Snowbird	Patiala - Kaithal Line at	Polymer Insulator	
227	400kV	Patran-Kaithal	1	D/C	47	POWERGRID	PTCL	POWERGRID	Triple Snowbird	Patran SS under the	Polymer Insulator	
228	400kV	Patran-Kaithal	2	D/C	47	POWERGRID	PTCL	POWERGRID	Triple Snowbird	ownership of PTCL.	Polymer Insulator	
229	400kV	RampurHEP-Nallagarh	1	D/C	128	POWERGRID	SJVNL	POWERGRID	Triple Snowbird	Nalladarh I II Oed at	Conventional	
230	400kV	RampurHEP-Nallagarh	2	D/C	128	POWERGRID	SJVNL	POWERGRID	Triple Snowbird	Rampur HEP	Conventional	
231	400kV	RAPS-C-Chittorgarh	1	D/C	155	POWERGRID	NPCIL	RRVPNL	Twin Moose		Partial (38%)	LILO of 400 kV Rapp C- Kankroli at Chhitorgarh
232	400kV	RAPS-C-Kankroli	1	D/C	199	POWERGRID	NPCIL	POWERGRID	Twin Moose		Partial (51%)	

233	400kV	RAPS-C-Kota	1	s/c	51	POWERGRID	NPCIL	POWERGRID	Twin Moose		Partial (55%)	400kV RAPS-Jaipur line whose work was completed till Kota section is connected with 400kV Raps- Kota#2 (for antitheft purpose) and hence 400kV RapsC-Kota #2 is now two twin moose lines connected in parallel paths
234	400kV	RAPS-C-Kota	2	D/C	55	POWERGRID	NPCIL	POWERGRID	Twin Moose	D/C with 400kV Jaipur- RAPP D line	Not Available	
235	400kV	Rasra-Balia	1	S/C	46	POWERGRID	UPPTCL	POWERGRID	Twin Moose	Mau-II at Rasara I II O	Not Available	
236	400kV	Rasra-Mau	1	S/C	38	POWERGRID	UPPTCL	UPPTCL	Twin Moose	nortion is of LIP	Not Available	
237	400kV	Rihand-Allahabad	1	D/C	279	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
238	400kV	Rihand-Allahabad	2	D/C	279	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
239	400kV	Roorkee-Kashipur	1	D/C	151	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (72%)	
240	400kV	Roorkee-Kashipur	2	D/C	151	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (72%)	
241	400kV	Roorkee-Saharanpur	1	D/C	36	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
242	400kV	Roorkee-Dehradun	1	D/C	80	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Partial (50%)	
243	400kV	Sarnath-Varanasi	1	D/C	70	POWERGRID	UPPTCL	POWERGRID	Quad Moose		Partial (52%)	LILO of Sarnath- Allahabad (144 KM) at 765/400kV Varanasi
244	400kV	Sarnath-Varanasi	2	D/C	107	POWERGRID	UPPTCL	POWERGRID	Quad Moose		Partial (52%)	
245	400kV	Shahjahanpur-Bareilly PG	1	D/C	116	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
246	400kV	Shahjahanpur-Bareilly PG	2	D/C	116	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
247	400kV	Shahjahanpur-Rosa	1	D/C	8	POWERGRID	POWERGRID	UPPCL	Twin Moose		Not Available	
248	400kV	Shahjahanpur-Rosa	2	D/C	8	POWERGRID	POWERGRID	UPPCL	Twin Moose		Not Available	
249	400kV	Shree Cement-Kota	1	D/C	208	POWERGRID	Sh. Cement	POWERGRID	Twin Moose		Polymer Insulator	
250	400kV	Shree Cement-Merta Sikar-Babai	1	D/C D/C	95	POWERGRID	POWERGRID	RRVPNL	Twin Moose	LILO PORTION IF OF NRSS36(B), LILO of 400kV Neemrana-Sikar 1 at Babai	Not Available	
252	400kV	Sikar-Ratangarh	1	D/C	76	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Conventional	
253	400kV	Sikar-Ratangarh	2	D/C	76	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Conventional	
254	400kV	Singrauli-Allahabad	1	S/C	224	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
255	400kV	Singrauli-Allahabad	2	S/C	202	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
256	400kV	Singrauli-Allahabad	3	S/C	215	POWERGRID	NTPC	POWERGRID	Twin Moose		Not Available	
257	400kV	Singrauli-Anpara	1	S/C	25	POWERGRID	NTPC	UPPTCL	Twin Moose		Partial (91%)	
258	400kV	Singrauli-Fatehpur	1	s/c	331	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	Kanpur at Fatehpur
259	400kV	Singrauli-LucknowUP	1	S/C	409	POWERGRID	NTPC	UPPTCL	Twin Moose		Conventional	
260	400kV	Singrauli-Rihand	1	S/C	42	POWERGRID	NTPC	NTPC	Twin Moose		Conventional	
261	400kV	Singrauli-Rihand	2	S/C	44	POWERGRID	NTPC	NTPC	Twin Moose		Conventional	
262	400kV	Singrauli-Vindhyachal	1	S/C	3	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
263	400kV	Singrauli-Vindhyachal	2	S/C	5	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
264	400kV	Koteswar(PG)-Koteswar(THDC)		D/C	3	POWERGRID	POWERGRID	THDC	Twin Moose		Conventional	
265	400kV	Koteswar(PG)-Koteswar(THDC)	2	D/C	3	POWERGRID	POWERGRID	THDC	Twin Moose		Conventional	
266	400kV	Tehri-Koteshwar(PG)	3	S/C	14	POWERGRID	THDC	POWERGRID	Quad Moose		Not Available	

267	400kV	Unnao-Jehta	1	D/C	70	POWERGRID	UPPTCL	UPPTCL	Twin Moose	LILO of 400kV Lucknow Unnao DC at Jehta (UP). LILO portion is of UP	Not Available	
268	400kV	Unnao-Jehta	2	D/C	70	POWERGRID	UPPTCL	UPPTCL	Twin Moose	LILO of 400kV Lucknow Unnao DC at Jehta (UP). LILO portion is of UP	Not Available	
269	400kV	Uri-II - Uri-I	1	s/c	10	POWERGRID	NHPC	NHPC	Twin Moose		Conventional	LILO of 400kV Uri-I - Wagoora D/C at Amargarh
270	400kV	Uri-II - Wagoora	1	S/C	105	POWERGRID	NHPC	POWERGRID	Twin Moose		Conventional	
271	400kV	Jauljivi-Bareilly_2	1	D/C	205	POWERGRID	POWERGRID	POWERGRID	Twin Moose	After LILO of 400kV Dhauliganga - Bareilly(UP) Double circuit line(Initially LILOed at Pithoragarh and charged at 220kV level) at Jauljivi(PG)	Not Available	
272	400kV	Jauljivi-Bareilly_2	2	D/C	205	POWERGRID	POWERGRID	POWERGRID	Twin Moose	After LILO of 400kV Dhauliganga - Bareilly(UP) Double circuit line(Initially LILOed at Pithoragarh and charged at 220kV level) at Jauljivi(PG)	Not Available	
B. POW	ERLINK Transmissi	ion Ltd										
1	400kV	Bareilly PG-Meerut	1	D/C	250	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Bareilly PG-
2	400kV	Bareilly PG-Meerut	2	D/C	250	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	Mandola-1 (241 Km) at
3	400kV	Bareilly UP-Bareilly PG	1	D/C	14	POWERLINK	UPPTCL	POWERGRID	Twin Moose		Polymer Insulator	
4	400kV	Bareilly UP-Bareilly PG	2	D/C	14	POWERLINK	UPPTCL	POWERGRID	Twin Moose		Polymer Insulator	*0
5	400kV	Gorakhpur PG-Lucknow PG	1	D/C	246	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	*Series compensated
6	400kV	Gorakhpur PG-Lucknow PG	2	D/C	246			I POWERGRID I	Twin Moose			lino
-				, D./O	4.0.0	DOWERLINK	POWERGRID		- · · · ·		Conventional	
7	400kV	Meerut-Mandola	3	D/C	102	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Bareilly PG-
7 8	400kV 400kV	Meerut-Mandola Meerut-Mandola	3 4	D/C D/C	102 102	POWERLINK POWERLINK POWERLINK	POWERGRID POWERGRID POWERGRID	POWERGRID POWERGRID	Twin Moose Twin Moose		Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI	400kV 400kV	Meerut-Mandola Meerut-Mandola	3 4	D/C D/C	102 102	POWERLINK POWERLINK	POWERGRID POWERGRID POWERGRID	POWERGRID POWERGRID	Twin Moose Twin Moose		Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1	400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar	3 4 1 2	D/C D/C D/C	102 102 78	POWERLINK POWERLINK POWERLINK	POWERGRID POWERGRID POWERGRID PKTSL	POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS		Conventional Conventional Conventional Not Available	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adap	400kV 400kV 400kV 400kV i Transmission Ind	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar	3 4 1 2	D/C D/C D/C D/C	102 102 78 78	POWERLINK POWERLINK POWERLINK PKTSL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL	POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS		Conventional Conventional Conventional Not Available Not Available	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1	400kV 400kV 400kV 400kV i Transmission Ind 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG	3 4 1 2	D/C D/C D/C D/C	102 102 78 78 50	POWERLINK POWERLINK POWERLINK PKTSL PKTSL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL	POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose		Conventional Conventional Conventional Not Available Not Available	ullo of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2	400kV 400kV 400kV i Transmission Ind 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG	3 4 1 2 1 2	D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose		Conventional Conventional Not Available Not Available Conventional Conventional	LLO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG	3 4 1 2 1 2 3	D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 50 56	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose	Bypassed at 400kV	Conventional Conventional Not Available Not Available Conventional Conventional Not Available	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG	3 4 1 2 1 2 3 4	D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 50 56 56	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG MahindergarhHVDC-Dhanonda	3 4 1 2 1 2 3 4 1	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 56 56 5	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda	Conventional Conventional Not Available Not Available Conventional Not Available Not Available Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6	400kV 400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda	3 4 1 2 1 2 3 4 1 2 2 3	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 50 56 56 5 5 5	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Conventional Not Available Conventional Not Available Not Available Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 200kV 200kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda orporation Pvt Ltd.)	3 4 1 2 3 4 1 2	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 56 5 5 5	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Conventional Not Available Conventional Conventional Not Available Not Available Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 3 4 1 2	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 5 5 5 5 5 5 66	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Not Available Not Available Not Available Conventional Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda MahindergarhHVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 3 4 1 2 2	D/C	102 102 78 78 50 50 56 56 55 5 5 5 5 66 66	POWERLINK POWERLINK PWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available Conventional Conventional Conventional Conventional Polymer Polymer	ullC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG MahindergarhHVDC-Dhanonda MahindergarhHVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 2 3 4 1 2 2	D/C	102 102 78 78 50 50 56 56 56 5 5 5 5 66 66 66	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Conventional Not Available Not Available Conventional Conventional Conventional Conventional Conventional Polymer Polymer	ullC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 1	400kV 400kV 400kV 1 Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV 400kV L (Powergrid Himau 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG MahindergarhHVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 2 1 2 2 1 2	D/C	102 102 78 78 50 50 56 56 56 55 5 66 66 66 66 39	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available Not Available Conventional Conventional Polymer Polymer Conventional	LLO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 6 E. APCP 1 2 F. PHTI 2 F. PHTI 1 2	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV L (Powergrid Hima 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhi	3 4 1 2 3 4 1 2 3 4 1 2 1 2 1 2 1 2 1 2	D/C	102 102 78 78 50 50 56 56 56 5 5 5 5 66 66 66 66 39 39	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available Conventional Conventional Polymer Polymer Conventional Conventional	LLO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 1 2 3 3	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV L (Powergrid Hima 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar I Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwan	3 4 1 2 3 4 1 2 2 1 2 1 2 1 1 2 1	D/C	102 102 78 78 50 50 56 56 56 5 5 5 5 66 66 66 66 60 39 39 39	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL POWERGRID POWERGRID PKATL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL HPPTCL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Conventional Conventional Polymer Polymer Conventional Conventional Conventional	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 1 2 3 4 - - - - - - - - - - - - -	400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar I Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwan	3 4 1 2 3 4 1 2 2 1 2 1 2 1 2 1 1 2 1	D/C	102 102 78 78 50 50 56 56 55 5 5 66 66 66 66 66 60 39 39 39 174	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL PKTSL PKTSL PKTL PHTL PHTL PHTL PHTL PHTL PHTL PHTL PH	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL POWERGRID POWERGRID PWERGRID PKATL JSW	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL HPPTCL HPPTCL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo	Conventional Conventional Conventional Not Available Not Available Conventional Not Available Conventional Conventional Polymer Polymer Conventional Conventional Conventional Not Available	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 6 E. APCP 1 2 7. PHTI 2 7. PHTI 2 3 4 5 5	400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar I ttd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwan	3 4 1 2 3 4 1 2 3 4 1 2 2 1 2 1 1 2 2 1 1 2 2	D/C	102 102 78 78 50 50 56 56 55 5 5 5 5 66 66 66 60 39 39 39 174 1 1 22	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL PKTSL PKTSL PKTL PHTL PHTL PHTL PHTL PHTL PHTL PHTL PH	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL POWERGRID POWERGRID POWERGRID PWATL JSW	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL HPPTCL HPPTCL HPPTCL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo (HP)	Conventional Conventional Conventional Not Available Not Available Conventional Not Available Conventional Conventional Polymer Polymer Conventional Conventional Not Available Not Available Not Available Not Available	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 6 E. APCP 1 2 7 F. PHTI 1 2 3 3 4 5 5 6 7	400kV 400kV 400kV i Transmission Ind 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwa	3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 3 1 1 2 2 1 2 1	D/C	102 102 78 78 50 50 56 56 5 5 5 5 5 5 5 5 5 5 7 7 8 66 66 66 66 39 39 39 39 174 1 1 22	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL PHTL PHTL PHTL PHTL PHTL PHTL PHTL PHT	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL APL POWERGRID POWERGRID POWERGRID PWERGRID PWERGRID PWERGRID PWERGRID PWERGRID PWERGRID POWERGRID	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL DTL DTL DTL HPPTCL HPPTCL HPPTCL HPPTCL SSW	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo (HP)	Conventional Conventional Conventional Not Available Not Available Conventional Not Available Not Available Conventional Conventional Conventional Conventional Not Available Conventional Not Available Not Available Conventional Not Available Not Available Conventional Not Available Conventional Not Available Not Available Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 7 F. PHTI 2 3 3 4 5 6 6 7 7 °	400kV 400kV 400kV i Transmission Ind 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahinderga	3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1	D/C D/C	102 102 78 78 50 50 56 56 56 5 5 5 66 66 66 66 66 39 39 39 174 1 1 22 22 22	POWERLINK POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL POWERGRID POWERGRID POWERGRID POWERGRID PWERGRID PWERGRID PWERGRID SW JSW	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL DTL PKATL PKATL HPPTCL HPPTCL HPPTCL JSW JSW	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo (HP)	Conventional Conventional Conventional Not Available Conventional Conventional Not Available Not Available Conventional Conventional Conventional Conventional Conventional Not Available Not Available Not Available Not Available Not Available Conventional Convention	LILO of Bareilly PG- Mandola-1&2 (241 Km)

			1					1				
9	400kV	Karcham Wangtoo-NJPC	2	D/C	34	PHTL	JSW	SJVNL	Triple snowbird		Conventional	_
10	400kV	Sorang-Wangtoo	1	D/C	21	PHTL	SORANG	HPPTCL	Quad Moose		Not Available	_
11	400kV	Sorang-Kala Amb	1	D/C	160	PHTL	SORANG	PKATL	Quad Moose		Not Available	
G. PKTC	L (Parbati-Koldam	Transmission)										
1	400kV	Koldam-Ludhiana	1	D/C	151	РКТСІ	NTPC	POWERGRID	Triple Snowbird		27% Polymer & 73%	
-	40000		-	5/0	151	TRICE		TOWERGRAD	Thpic Showbird		porcelain	
2	400kV	Koldam-Ludhiana	2	D/C	151	PKTCI	NTPC	POWERGRID	Triple Spowbird		27% Polymer & 73%	
2	40000	Koldam-Eddmana		5/0	151	TRICE	NITC	TOWERGRID	Thple Showbird		porcelain	
3	400kV	Koldam-Banala	1	D/C	67	PKTCL	NTPC	POWERGRID	Quad Moose		100% porcelain	
4	400kV	Nallagarh-Banala	1	D/C	62	PKTCL	POWERGRID	POWERGRID	Quad Moose		100% porcelain	Powergrid owned 46.38km
5	400kV	Parbati-II- ParbatiPooling (Banala)	1	S/C	13	PKTCL	NHPC	POWERGRID	Quad Moose		100% porcelain	Some portion is of
6	400kV	Parbati-III- ParbatiPooling (Banala)	1	S/C	4	PKTCL	NHPC	POWERGRID	Quad Moose		100% porcelain	Powergrid
7	400kV	Parbati II- Sainj	1	S/C	1	PKTCL	NHPC	HPPCL	Quad Moose		100% porcelain	LILO of 400kV Parbati I
8	400kV	Parbati III- Saini	1	S/C	9	PKTCL	NHPC	HPPCL	Quad Moose		100% porcelain	Parbati III at Sainj
H. INDIG	RID:NRSS-29 Tran	smission Company Limited				-						
1	400kV	Jalandhar-Samba	1	D/C	135	NRSS-29	POWERGRID	POWERGRID	Twin Moose		Polymer	
2	400kV	Jalandhar-Samba	2	D/C	135	NRSS-29	POWERGRID	POWERGRID	Twin Moose		Polymer	
3	400kV	Amargarh-Samba	1	D/C	286	NRSS-29	NRSS-29	POWERGRID	Twin Moose		Polymer	
4	400kV	Amargarh-Samba	2	D/C	286	NRSS-29	NRSS-29	POWERGRID	Twin Moose		Polymer	
5	400kV	Uri-I - Amargarh	1	D/C	62	NRSS-29	NHPC	NRSS-29	Twin Moose	LILO of 400kV D/C Uri-	Polymer	
6	400kV	Uri-I - Amargarh	2	D/C	62	NRSS-29	NHPC	NRSS-29	Twin Moose	I – Wagoora Line at	Polymer	
7	400kV	Amargarh - Wagoora	1	D/C	36	NRSS-29	NRSS-29	POWERGRID	Twin Moose	Amargarh SS under the	Polymer	
8	400kV	Amargarh - Wagoora	2	D/C	36	NRSS-29	NRSS-29	POWERGRID	Twin Moose	ownership of NRSS-	Polymer	
. Power	grid Unchahar Tra	nsmission Ltd.		5/0		11135-23	11135-23		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u></u>	- orginer	
1	40041/	Fatebour-Unchabar	1	D/C	5/	PLITI	POWERGRID	NRDDI	Twin Moose		Not Available	
2	40041	Fatehnur-Unchahar	2		5/		POWERGRID	NRDDI	Twin Moose		Not Available	
. NRSSX	XXI(B) (Sekura En	ergy)		5/0	54	1.512	- Official and		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Hot Wallable	
1	400kV	Amritsar-Malerkotla	1	D/C	149	NRSSXXXXI/R)	POWERGRID	POWERGRID	Twin Moose		Polymer	
2	40041	Amritsar-Malerkotla	2		1/10		POWERGRID	POWERGRID	Twin Moose		Polymer	
3	400kV	Kurukshetra-Malerkotla	1	D/C	139	NRSSXXXXI(B)	POWERGRID	POWERGRID	Twin Moose		Polymer	
4	400kV	Kurukshetra-Malerkotla	2		139	NRSSXXXXI(B)	POWERGRID	POWERGRID	Twin Moose		Polymer	-
(, Gurga	on Palwal Transm	ission Ltd.	<u></u>	5/0	135				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- orginer	
1	400kV	Dhanoda-Neemrana	1	D/C	47	GPTI	HVPNI	POWERGRID	Twin HTLS	Bypassed at Dhanonda	Polymer	
2	40041	Dhanoda-Neemrana	2		47	GPTI	HVDNI	POWERGRID	Twin HTLS	to form	Polymer	
2	400kV	Prithala-Kadarnur	1		29	GPTI	GPTI	GPTI	Twin HTLS		Polymer	-
4	400kV	Prithala-Kadarpur	2		29	GPTI	GPTI	GPTI	Twin HTLS		Polymer	-
5	400kV	Prithala(GPTI)-Aligarh(PG)	1		10	GPTI	GPTI	POWERGRID	Twin HTLS		Polymer	
6	40041	Prithala(GPTI)-Aligarh(PG)	2		49	GPTI	GPTI	POWERGRID	Twin HTIS		Polymor	
7	40060	Kadarpur-Sohna Road	1		10	GPTI	GPTI	GPTI			Polymor	
/ 8	400KV	Kadarpur-Sohna Road	2		10	GPTL	GPTL	GPTI			Polymor	
O ERTI	HUUKV		<u> </u>		10	GFIL	GFIL	Grit	I WIII FILD		rotymer	
1	400kV	APEDRI Estobasth Booling	1	D/C	1	СРТІ	ЕРТІ		Ound moose		Not Available	
2	400KV		2		1				Quad moose		Not Available	-
2	400KV	ANLENL-Falengain Pooling	2	D/C	1	FBIL	FDIL	FBIL	Quau moose	LILO of 400kV	NOT AVAILABLE	-
3	400kV	Fatehgarh II-Fatehgarh Pooling	1	D/C	45	FBTL	POWERGRID	FBTL	Hexa Zebra+ Twin HTLS	Fatehgarh I-Bhadla-1 at Fatehgarh II. LILO Portion is of Powergrid	Not Available	
4	400kV	Fatehgarh II-Fatehgarh Pooling	2	D/C	45	FBTL	POWERGRID	FBTL	Hexa Zebra+ Twin HTLS		Not Available	
M. PBTS	L											_
1	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	1	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	

2	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	2	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	
3	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	3	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	
4	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	4	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	
5	400kV	Khetri (PKTSL)-Bhiwadi(PG)	1	D/C	126	PBTSL	PKTSL	POWERGRID	Twin HTLS		Not Available	
6	400kV	Khetri (PKTSL)-Bhiwadi(PG)	2	D/C	126	PBTSL	PKTSL	POWERGRID	Twin HTLS		Not Available	
N. PRTL		T										
1	400kV	Jaisalmer(RS)-Fatehgarh_III(PG)	1	D/C	50	PRTL	RAJASTHAN	PRTL	Twin HTLS		Not Available	
2	400kV	Jaisalmer(RS)-Fatehgarh_III(PG)	2	D/C	50	PRTL	RAJASTHAN	PRTL	Twin HTLS		Not Available	
3	400kV	Fatehgarh_III(PG)- Fatehgarh_II(PG)	1	D/C	44	PRTL	PRTL	POWERGRID	Twin HTLS		Not Available	
4	400kV	Fatehgarh III(PG)- Fatehgarh II(PG)	2	D/C	44	PRTL	PRTL	POWERGRID	Twin HTLS		Not Available	
O. NRSS	-36	, <u> </u>										
1	400kV	Babai(RS)-Bhiwani(PG)	1	D/C	111	NRSS-36	NRSS-36	POWERGRID	Twin Moose		Not Available	
2	400kV	Babai(RS)-Bhiwani(PG)	2	D/C	111	NRSS-36	NRSS-36	POWERGRID	Twin Moose		Not Available	
RE Cor	nacted at IST	IS Dedicated Lines		, ,-								
NE COI	interreu ar 13	15 Dealcateu Lilles										
A. RENE	w			1								
1	400kV	Bikaner(PG) - Bikaner (Renew)	1	S/C	5	RENEW	POWERGRID	RENEW	Twin Moose		Not Available	
B. Avaad	la	1		· · ·			1	1	1			
1	400kV	Bikaner(PG)-Avaada	1	S/C	14	AEPL	POWERGRID	AEPL	Twin Moose		Not Available	
C. ARPO	PL											
1	400kV	Bikaner(PG)-Ayana	1	s/c	12	ARPOPL	PGCIL	Ayana	ACSR Twin Moose+AL 59		Not Available	
D. Azure	2											
1	400kV	Bikaner(PG)-Azure 43 PSS	1	S/C	9	Azure	POWERGRID	Azure 43 PSS	Twin Moose		Not Available	
2	400kV	Azure43(RSS)-Azure 43 PSS	1	S/C	3	Azure	Azure 43 PSS	Azure 43 RSS	Twin Moose		Not Available	
E. RSRPL								•				
1 F NTPC	400kV	Bikaner(RENEW) - Renew Surya Ravi	1	S/C	13	RSRPL	RENEW	RSRPL	Twin Moose		Not Available	
1	100kV	Bhadla II - Kolavat	1	D/C	20	NTDC	POWERGRID	NTPC	AsooM beu		Not Available	
2	400kV	Kalavat Kalavat 2	1	D/C	25	NIFC	NTRC	NIFC	Quad Moose		Not Available	
2	40060	Kolayat - Kolayat_2	1	D/C	2	NIFG	NIPC	NIFC	Quau woose		NUL AVAILABLE	
SIATE	LINES											
A. DTL												
1	400kV	Bamnauli-Tughlakabad	1	M/C	68	DTL	DTL	POWERGRID		Tower is quad circuit tower	Polymer Insulator	
2	400kV	Bamnauli-Tughlakabad	2	M/C	68	DTL	DTL	POWERGRID		Tower is quad circuit tower	Polymer Insulator	
3	400kV	Bamnoli-Jhatikara	1	D/C	12	DTL	DTL	POWERGRID	Quad bersimis		Polymer Insulator	
4	400kV	Bamnoli-Jhatikara	2	D/C	12	DTL	DTL	POWERGRID	Quad bersimis		Polymer Insulator	
5	400kV	Bawana-Mundka	1	D/C	18	DTL	DTL	DTL	Quad bersimis		Polymer Insulator	
6	400kV	Bawana-Mundka	2	D/C	18	DTL	DTL	DTL	Quad bersimis		Polymer Insulator	
7	400kV	Jhatikara-Mundka	1	D/C	17	DTL	POWERGRID	DTL	Quad bersimis		Polymer Insulator	
8	400kV	Jhatikara-Mundka	2	D/C	17	DTL	POWERGRID	DTL	Quad bersimis		Polymer Insulator	
B. HVPNL	-											
1	400kV	CLP Jhajjar - Dhanonda	1	D/C	20	HVPNL	CLP Jhajjar	HVPNL	Twin Moose		Conventional	
2	400kV	CLP Jhaijar - Dhanonda	2	D/C	20	HVPNL	CLP Jhaiiar	HVPNL	Twin Moose		Conventional	
3	400kV	CLP Jhajjar- Kabulpur	1	D/C	35	IKTPI	CLP Jhajjar	HVPNI	Quad Moose		Already had Anti fog	
4	400kV	CLP Ibajjar-Kabulpur	2	D/C	35	IKTPI	CLP Inajjar	HVPNI	Quad Moose		Polymer Insulator	
5	400kV	Deenalour-Kabulour	1	D/C	67		KT Ibaijar	HVPNI	Quad Moose		Installed on every	
6	400kV	Doopalpur Kabulpur	2		67		KT Jhajjal		Quad Moose		towors	
0	400K V	Incehaihai-vanaihai	2	D/C	07	JNIPL		TVPINL			towers	

8 400kV Dhanoda-Daultabad 2 D/C 73 HVPNL HVPNL HVPNL Quad Moose Attack Mode Patholics Number Patholics	
9 400kV Gurgaon-Daultabad 1 0/C 21 HVPNL POWERGRID HVPNL Quad Moose Institutor Skt 10 400kV Gurgaon-Daultabad 1 D/C 24 HVPNL APCPL HVPNL Quad Moose Polymer Insulator R 11 400kV Ihajar-Daultabad 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator R 13 400kV Indar-Fatehabad 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator Insulator R 14 400kV Ind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator Insulator <td></td>	
10 400kv Gurgaon-Daultabad 2 0/C 21 HVPNL PVPNL Quad Moose HVPNL PVPNL 11 400kv hajar-Daultabad 1 0/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator R 12 400kv hajar-Daultabad 2 0/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator R 13 400kv khedar-Fatehabad 1 D/C 40 HVPNL APCPL HVPNL Twin Moose Polymer Insulator Indifference	x towers multi-circuit
11 400kV ihajjar-Daulatabad 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator R 12 400kV Ihajjar-Daulatabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator R 13 400kV Khedar-Fatehabad 1 D/C 64 HVPNL HVPNL HVPNL Twin Moose Polymer Insulator Insulator 14 400kV Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator Insulator <td>with Bamnauli-</td>	with Bamnauli-
12 400kV Jhajar-Daulatabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator R 13 400kV Khedar-Fatehabad 1 D/C 40 HVPNL HPRL Twin Moose Polymer Insulator R 14 400kV Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator rd 15 400kV Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator	Partial (84%),
13400kVKhedar-Fatehabad1D/C40HVPNLHPGCLPOWERGRIDTwin MooseLess the second seco	Remaining pending
14 400kv Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 15 400kv Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator Polymer Insulator 16 400kv Khedar-Kirori 1 D/C 6.2 HVPNL HPGL HVPNL Twin Moose Conventional Print 17 400kv Khedar-Kirori 2 D/C 6 HVPNL HPGL HVPNL Twin Moose Conventional Print 18 400kv Khedar-Nuhiawali 1 D/C 78 HVPNL HVPNL Twin Moose Conventional Extrem 19 400kv Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional Extrem 1 400kv Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available 2 400kv Behman Jassa- HM	Presently there is no anning of replacment of Convention disc isulator with Polymer Insulators
15 400kv Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator Program Insulator 16 400kv Khedar-Kirori 1 D/C 6.2 HVPNL HPCL Hwin Moose Conventional Program Insulator Partial Conventional	
16 400kV Khedar-Kirori 1 D/C 6.2 HVPNL HPGCL HVPNL Twin Moose Conventional Princ 17 400kV Khedar-Kirori 2 D/C 6 HVPNL HVPRL HVPNL Twin Moose Conventional Extension 18 400kV Khedar-Kirori 1 D/C 78 HVPNL HVPNL HVPNL Twin Moose Conventional Extension 19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional Extension 2 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available 2 400kV Baglihar(stage 1)-Kishenpur 2 D/C 17 PSTCL PSTCL PSTCL Not Available 2 400kV Behman Jassa- HMEL 1 D/C 17 PSTCL PSTCL PSTCL Twin Moose	
17 400kV Khedar-Kirori 2 D/C 6 HVPNL HPGCL HVPNL Twin Moose Conventional plan 18 400kV Khedar-Nuhiavalii 1 D/C 114 HVPNL HVPNL Twin Moose Conventional EX 19 400kV Nuhiavali-Fachabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional EX 1 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional EX 2 400kV Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional EX 0 PSTCL E D/C 17 PSTCL POWERGRID Twin Moose Mot Available Not Available 2 400kV Behman Jassa-HMEL 1 D/C 17 PSTCL PSTCL Twin Moose A	Presently there is no
18 400kv Khedar-Nuhiawali 1 D/C 114 HVPNL HPGCL HVPNL Twin Moose Conventional Exit 19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional Stat 1 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional Convention	anning of replacment
19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional Conventional 1 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional 2 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available 0. PSTCL -	xisting disc insulator
C. PDD (Jammu & Kashmir) Image: Constraint of the state of the	are of Porcelain
1 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional 2 400kV Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available D. PSTCL -	
2400kVBaglihar(stage 1)-Kishenpur2D/C68JK PDDJKSPDCLPOWERGRIDTwin MooseNot AvailableD. PSTCL	
D. PSTCL Image: Constraint of the second	
1400kVBehman Jassa- HMEL1D/C17PSTCLPSTCLPSTCLTwin MooseNot Available2400kVBehman Jassa- HMEL2D/C17PSTCLPSTCLPSTCLTwin MooseAfter LILO of 400 KV3400kVBehman Jassa- Moga1S/C113PSTCLPSTCLPSTCLPSTCLTwin MooseAfter LILO of 400 KV3400kVBehman Jassa- Moga1S/C113PSTCLPSTCLPSTCLPSTCLTwin MooseAfter LILO of 400 KV Moga at 400 KV Behman Jassa4400kVMakhu-Amritsar1D/C64PSTCLPSTCLPSTCLTwin MoosePartial (10%)5400kVMakhu-Amritsar2D/C64PSTCLPSTCLPSTCLTwin MoosePartial (10%)6400kVMuktsar-Makhu1D/C96PSTCLPSTCLPSTCLTwin MooseConventional7400kVMuktsar-Makhu2D/C96PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu1D/C52PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu1D/C52PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu1D/C52PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu1<	
2 400kV Behman Jassa- HMEL 2 D/C 17 PSTCL PSTCL PSTCL Twin Moose Atter LILO of 400 KV 3 400kV Behman Jassa- Moga 1 S/C 113 PSTCL PSTCL PSTCL PSTCL Twin Moose Atter LILO of 400 KV Not Available 4 400kV Makhu-Amritsar 1 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) Not Available 5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 6 400kV Muktsar-Makhu 1 D/C 96 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 7 400kV Muktsar-Makhu 2 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 7 400kV Muktsar-Makhu 2 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 8 400kV Nakodar-Makhu 1 D/C 52	
3400kVBehman Jassa- Moga1S/C113PSTCLPSTCLPSTCLPSTCLTwin MooseAfter LILO of 400 KV TSPL to 400 KV Moga at 400 KV Behman Jassa SinghNot Available4400kVMakhu-Amritsar1D/C64PSTCLPSTCLPSTCLTwin MoosePartial (10%)5400kVMakhu-Amritsar2D/C64PSTCLPSTCLPSTCLTwin MoosePartial (10%)6400kVMuktsar-Makhu1D/C96PSTCLPSTCLPSTCLTwin MooseConventional7400kVMuktsar-Makhu2D/C96PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu1D/C52PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu2D/C52PSTCLPSTCLPSTCLTwin MooseConventional	
4400kVMakhu-Amritsar1D/C64PSTCLPSTCLPSTCLTwin MoosePartial (10%)5400kVMakhu-Amritsar2D/C64PSTCLPSTCLPSTCLTwin MoosePartial (10%)6400kVMuktsar-Makhu1D/C96PSTCLPSTCLPSTCLTwin MooseConventional7400kVMuktsar-Makhu2D/C96PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu1D/C52PSTCLPSTCLPSTCLTwin MooseConventional8400kVNakodar-Makhu2D/C52PSTCLPSTCLPSTCLTwin MooseConventional	
5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 6 400kV Muktsar-Makhu 1 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 7 400kV Muktsar-Makhu 2 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 8 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional 8 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional	
6 400kV Muktsar-Makhu 1 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 7 400kV Muktsar-Makhu 2 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 8 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional 9 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional	
7 400kV Muktsar-Makhu 2 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional 8 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional 9 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional	
8 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional	
9 400kV Nakodar-Iviakhu 2 D/C 52 PSTCL PSTCL PSTCL Iwin Moose Conventional	
10 400kV Nakodar-Moga 1 S/C 78 PSTCL PSPCL POWERGRID Twin Moose Not Available LLC	-O of 400kV Talwandi Ibo-Nakodar at Moga
11 400kV Rajpura-Dhuri 1 D/C 86 PSTCL PSTCL Twin Moose Conventional Lilo	o of Rajpura th-Dhuri
12 400kV Rajpura TPS- Rajpura 1 D/C 9 PSTCL PSPCL PSTCL Twin Moose Conventional 1 at	at 400kV Rajpura
13 400kV Rajpura-Dhuri 2 D/C 86 PSTCL PSTCL Twin Moose Conventional Lilo	o of Rajpura th-Dhuri
14 400kV Rajpura TPS- Rajpura 2 D/C 9 PSTCL PSPCL PSTCL Twin Moose Not Available 2 at	at 400kV Rajpura
15 400kV Rajpura TPS-Nakodar 1 D/C 139 PSTCL PSPCL PSTCL Twin Moose Conventional	
16 400kV Rajpura TPS-Nakodar 2 D/C 139 PSTCL PSTCL Twin Moose Conventional	
17 400kV Talwandi Saboo- Dhuri 1 D/C 175 PSTCL PSPCL PSTCL Twin Moose Partial (22%)	
18 400kV Talwandi Saboo- Dhuri 2 D/C 175 PSTCL PSTCL PSTCL Twin Moose Partial (22%)	
19 400kV Talwandi Saboo- Behman Jassa 1 D/C 20 PSTCL PSPCL PSTCL Twin Moose After LILO of 400 KV 19 400kV Talwandi Saboo- Behman Jassa 1 D/C 20 PSTCL PSPCL PSTCL Twin Moose After LILO of 400 KV 10 KV KV KV KV KV KV KV 10 KV KV KV KV KV KV	
20 400kV Talwandi Saboo- Nakodar 1 D/C 180 PSTCL PSPCL PSTCL Twin Moose Conventional	
21 400kV Talwandi Saboo- Muktsar 1 D/C 100 PSTCL PSTCL PSTCL Twin Moose Conventional	
22 400kV Talwandi Saboo- Muktsar 2 D/C 100 PSTCL PSPCL PSTCL Twin Moose Conventional	
E. PTCUL	
1 400kV Alaknanda(GVK)-Srinagar(PTCUL) 1 D/C 14 PTCUL GVKPIL PTCUL Twin Moose Conventional	
2 400kV Alaknanda(GVK)-Srinagar(PTCUL) 2 D/C 14 PTCUL GVKPIL PTCUL Twin Moose Conventional	
3 400kV Muradabad-Kashipur 1 S/C 108 PTCUL UPPTCL PTCUL Twin Moose Conventional	
4 400kV Rishikesh-Nehtaur 1 D/C 124 PTCUL PTCUL UPPTCL Twin Moose Not Available	LILO of 400kV

5	400kV	Nehtaur-Kashipur	2	D/C	80	PTCUL	UPPTCL	PTCUL	Twin Moose		Not Available	Rishikesh-Kashipur
6	400kV	Roorkee-Rishikesh	1	S/C	50	PTCUL	POWERGRID	PTCUL	Twin Moose	LILO portion is of POWERGRID	Not Available	
7	400kV	Roorkee-Muzaffarnagar	1	S/C	71	PTCUL	POWERGRID	UPPTCL	Twin Moose		Not Available	
F. RRVP	NL											
1	400kV	Ajmer-Bhilwara	1	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
2	400kV	Ajmer-Bhilwara	2	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
3	400kV	Akal-Barmer	1	S/C	124	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
4	400kV	Akal-Jodhpur	1	S/C	225	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
5	400kV	Akal-Ramgarh	1	D/C	99	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
6	400kV	Akal-Ramgarh	2	D/C	99	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
7	400kV	Anta-Chhabra	1	s/c	90	RRVPNL	RRVPNL	RVUNL	Quad Moose	Bypassed at Anta to form Chhabra- Kota(PG)	Not Available	
8	400kV	Anta-Chhabra SC	1	D/C	89	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
9	400kV	Anta-Chhabra SC	2	D/C	89	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
10	400kV	Anta-Kalisindh	1	D/C	80	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
11	400kV	Anta-Kalisindh	2	D/C	80	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
12	400kV	Anta-Kawai	1	D/C	50	RRVPNL	RRVPNL	Kawai(Adani)	Quad Moose		Not Available	
13	400kV	Anta-Kawai	2	D/C	50	RRVPNL	RRVPNL	Kawai(Adani)	Quad Moose		Not Available	
14	400kV	Anta-Kota (PG)	1	S/C	91	RRVPNL	RRVPNL	POWERGRID	Twin Moose	Bypassed at Anta to form Chhabra- Kota(PG)	Not Available	
15	400kV	Barmer-Bhinmal	1	D/C	144	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
16	400kV	Barmer-Bhinmal	2	D/C	144	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
17	400kV	Barmer-Jaisalmer-II (Bhaesada)	1	D/C	117	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
18	400kV	Barmer-Jaisalmer-II (Bhaesada)	2	D/C	117	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
19	400kV	Barmer-Rajwest	1	D/C	15	RRVPNL	RRVPNL	RAJWEST	Twin Moose		Conventional	
20	400kV	Bhadla-Jodhpur	1	D/C	106	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
21	400kV	Bhilwara-Chhabra	1	S/C	303	RRVPNL	RRVPNL	RVUNL	Twin Moose		Conventional	
22	400kV	Bhilwara-Chittorgarh(RRVPNL)	1	D/C	49	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
23	400kV	Bhilwara-Chittorgarh(RRVPNL)	2	D/C	49	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
24	400kV	Bikaner-Bhadla	1	D/C	189	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
25	400kV	Bikaner-Bhadla	2	D/C	189	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
26	400kV	Bikaner-Merta	1	S/C	172	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
27	400kV	Bikaner-Sikar(PG)	1	D/C	171	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
28	400kV	Bikaner-Sikar(PG)	2	D/C	171	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
29	400kV	Chhabra - Kawai SCTPS	1	S/C	45	RRVPNL	RVUNL	APRL	Twin Moose		Conventional	
30	400kV	Chhabra-Chhabra SC	1	D/C	2	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
31	400kV	Chhabra-Chhabra SC	2	D/C	2	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
32	400kV	Heerapura-Hindaun	1	S/C	192	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
33	400kV	Hindaun-Chhabra	1	S/C	305	RRVPNL	RRVPNL	RVUNL	Twin Moose		Conventional	
34	400kV	Kakani (Jodhpur New)-Jodhpur	2	S/C	102	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
35	400kV	Kankani (Jodhpur New)-Akal	1	D/C	223	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
36	400kV	Kankani(Jodhpur New)-Jaisalmer-II(Bhainsra)	1	D/C	177	RRVPNL	RRVPNL	RRVPNL	Quad Moose	LILO of 400kV Kankani(Jodhpur New)· Akal ckt-2	Not Available	
37	400kV	Jaisalmer-II(Bhainsra)-Akal	1	D/C	61	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
38	400kV	Kankani (Jodhpur New)-Jodhpur	1	S/C	67	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
39	400kV	Kankani (Jodhpur New)-Merta	1	s/c	140	RRVPNL	RRVPNL	RRVPNL	Twin Moose	LILO of 400kV Jodhpur- Merta-1 at Kakani	Not Available	
40	400kV	Merta-Bhadla	1	D/C	175	RRVPNL	RRVPNL	RRVPNL	Twin Moose	LILO of 400kV Jodhpur- Merta-2 at Bhadla	Not Available	
41	400kV	Merta-Heerapura	1	S/C	175	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
42	400kV	Merta-Ratangarh	1	S/C	173	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	

43	400kV	Phagi-Ajmer(RRVPNL)	1	D/C	109	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
44	400kV	Phagi-Ajmer(RRVPNL)	2	D/C	109	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
45	400kV	Phagi-Heerapura	1	D/C	52	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
46	400kV	Phagi-Heerapura	2	D/C	52	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
47	400kV	Rajwest - Kankani (Jodhpur New)	1	s/c	209	RRVPNL	RRVPNL	RRVPNL	Twin Moose	LILO of 400kV Jodhpur-Rajwest-I at Kakani	Not Available	
48	400kV	Rajwest-Jodhpur	1	D/C	209	RRVPNL	RWPL	RRVPNL	Twin Moose		Conventional	
49	400kV	Ramgarh-Bhadla	1	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
50	400kV	Ramgarh-Bhadla	2	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
51	400kV	Suratgarh-Bikaner	1	S/C	146	RRVPNL	RVUNL	RRVPNL	Twin Moose		Conventional	
52	400kV	Suratgarh-Ratangarh	1	S/C	144	RRVPNL	RVUNL	RRVPNL	Twin Moose		Conventional	
53	400kV	Suratgarh-Ratangarh	2	s/c	144	RRVPNL	RVUNL	RRVPNL	Twin Moose		Conventional	
54	400kV	Suratgarh-Suratgarh SC	1	S/C	2	RRVPNL	RVUNL	RVUNL	Quad Moose		Not Available	
55	400kV	Suratgarh SC-Bikaner	1	D/C	140	RRVPNI	RVUNI	RRVPNI	Twin Moose		Not Available	
56	400kV	Suratgarh SC-Bikaner	2		140	RRVPNI	RVUNI	RRVPNI	Twin Moose		Not Available	
G LIDDI		Juratgarn Se-bikaner	2	0/0	140		RUONE		T WITT WIGOSC		Not Available	_
1	40044	Agra (Establish) Agra South	1	D/C	70				Twin Mooco		Not Available	
	400K V	Agra (Fateribau)-Agra Soutri		0/0	70	UPPICL	UPPICL	UPPICL	I WIII IVIOUSE		NOT AVAIIABLE	10.0 -5 400 114
2	400kV	Agra (UP)-Agra(Fatehbad)	1	s/c	104	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	Agra(UP)- Muradnagar(N) at Fatehabad(UP)
3	400kV	Agra UP-Unnao	1	S/C	279	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (25%)	
4	400kV	Agra(Fatehbad)-Mathura	1	S/C	142	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
5	400kV	Agra(Fatehbad)-Mathura	2	D/C	151	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	LILO of 400 kV Fatehabad(UP)- Muradnagar at Mathura
6	400kV	Alakhnanda-Vishnuprayag	1	D/C	109	UPPTCL	GVKPIL	JPVL	Twin Moose		Not Available	
7	400kV	Aligarh-Mainpuri	1	D/C	93	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
8	400kV	Aligarh-Mainpuri	2	D/C	93	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
9	400kV	Aligarh-Muradnagar	1	s/c	177	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	*Series Compensated line (40%). It would be shifted
10	400kV	Aligarh-Sikandrabad	1	D/C	95	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
11	400kV	Aligarh-Harduaganj	1	S/C	40	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
12	400kV	AnparaB-AnparaC	1	D/C	0.05	UPPTCL	UPRVUNL	LANCO	Quad Moose		Conventional	
13	400kV	AnparaB-AnparaC	2	D/C	0.05	UPPTCL	UPRVUNL	LANCO	Quad Moose		Conventional	
14	400kV	AnparaB-AnparaD	1	D/C	5	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Not Available	
15	400kV	AnparaB-AnparaD	2	D/C	5	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Not Available	
16	400kV	AnparaB-Mau	1	S/C	262	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Partial (13%)	
17	400kV	AnparaB-Obra B	1	s/c	40	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Partial	
18	400kV	AnparaB-Sarnath	1	D/C	158	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Partial	
19	400kV	AnparaB-Sarnath	2	D/C	158	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Conventional	
20	400kV	Ataur-Hapur	1	D/C	52	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
21	400kV	Ataur-Hapur	2	D/C	52	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
22	400kV	Ataur-Indirapuram	1	D/C	15	UPPTCI	UPPTCI	UPPTCI	Quad Moose		Not Available	
23	400kV	Ataur(UP)-Noida Sec 123(UP)	1	D/C	19	UPPTCL	UPPTCL	UPPTCL	Quad Moose (LILO portion Twin HTLS)	LILO of 400 KV ATAUR- INDIRAPURAM CKT-II	Not Available	
24	400kV	Indirapuram(UP)-Noida Sec 123(UP)	1	D/C	17	UPPTCL	UPPTCL	UPPTCL	Quad Moose (LILO portion Twin HTLS)	at 400 KV NOIDA SECTOR 123	Not Available	
25	400kV	Azamgarh-Mau	1	S/C	48	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (79%)	
26	400kV	Azamgarh-Tanda	1	D/C	153	UPPTCL	UPPTCL	NTPC	Twin Moose		Not Available	
27	400kV	Badaun-Sambhal	1	D/C	77	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
28	400kV	Badaun-Sambhal	2	D/C	77	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
29	400kV	Banda-Orai	1	D/C	108	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
30	400kV	Banda-Orai	2	D/C	108	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
----	-------	-------------------------------	---	-----	-----	--------	---------	-----------	------------	--	--	
31	400kV	Banda-Rewa road	1	D/C	177	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
32	400kV	Banda-Rewa road	2	D/C	177	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
33	400kV	Bara-Meja	1	D/C	32	UPPTCL	UPPTCL	MUNPL	Quad Moose	LILO of 400kV Bara- Rewa road D/C at Meja		
34	400kV	Bara-Meja	2	D/C	32	UPPTCL	UPPTCL	MUNPL	Quad Moose			
35	400kV	Bareilly UP-Unnao	1	D/C	271	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Partial (15%)	*Series Compensated line (45%)	
36	400kV	Bareilly UP-Unnao	2	D/C	271	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Partial (15%)	*Series Compensated line (45%)	
37	400kV	Gorakhpur UP-Azamgarh	1	S/C	90	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Partial (76%)		
38	400kV	Gr. Noida(765)-Sector 148	1	D/C	47	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
39	400kV	Gr. Noida(765)-Sector 148	2	D/C	47	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
40	400kV	Gr. Noida-Gr. Noida (765)	1	D/C	45	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
41	400kV	Gr. Noida-Gr. Noida (765)	2	D/C	45	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
42	400kV	Gr.Noida-Sikandrabad	1	D/C	17	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
43	400kV	Gr.Noida-Sikandrabad	2	D/C	17	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
44	400kV	Hapur-Dasna	1	D/C	14	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
45	400kV	Hapur-Dasna	2	D/C	14	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
46	400kV	Hapur-Moradabad	1	S/C	109	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
47	400kV	Hapur-Muradnagar	1	S/C	28	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
48	400kV	Harudaganj-Sikandarabad	1	S/C	115	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
49	400kV	Mainpuri(UP)-Mainpuri(PG)	1	D/C	25	UPPTCL	UPPTCL	POWERGRID	Twin Moose	Not Available	LILO of 400kV Orai- Mainpuri(PG) at	
50	400kV	Mainpuri(UP)-Mainpuri(PG)	2	D/C	26	UPPTCL	UPPTCL	POWERGRID	Twin Moose	Not Available	Mainpuri(UP)	
51	400kV	Meja-Musauli	1	D/C	65	UPPTCL	MUNPL	UPPTCL	Quad Moose	Not Available		
52	400kV	Meja-Rewa road	1	D/C	45	UPPTCL	MUNPL	UPPTCL	Quad Moose	Not Available		
53	400kV	Muradnagar New- Mathura	1	D/C	246	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available	LILO of 400 kV Fatehabad(UP)- Muradnagar at Mathura	
54	400kV	Muradnagar-Ataur	2	D/C	18	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
55	400kV	Musauli-Rewa road	1	D/C	34	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
56	400kV	Muzaffarnagar-Alakhnanda	1	D/C	189	UPPTCL	UPPTCL	GVKPIL	Twin Moose	Not Available		
57	400kV	Muzaffarnagar-Ataur	1	D/C	121	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
58	400kV	Muzaffarnagar-Vishnuprayag	1	D/C	280	UPPTCL	UPPTCL	JPVL	Twin Moose	Conventional		
59	400kV	Noida Sec 148 - Noida Sec 123	1	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
60	400kV	Noida Sec 148 - Noida Sec 123	2	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
61	400kV	Noida Sec 148-Noida Sec 123	1	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
62	400kV	Noida Sec 148-Noida Sec 123	2	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
63	400kV	Obra-Rewa road	1	S/C	179	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
64	400kV	Obra-Sultanpur	1	S/C	230	UPPTCL	UPRVUNL	UPPTCL	Twin Moose	Conventional		
65	400kV	Obra B - Obra C	1	S/C	1	UPPTCL	UPRVUNL	UPRVUNL	Twin Moose	Not Available		
66	400kV	Orai-Mainpuri(UP)	1	D/C	176	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
67	400kV	Orai-Mainpuri(UP)	2	D/C	176	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
68	400kV	Orai-Paricha	1	D/C	111	UPPTCL	UPPTCL	UPRVUNL	Twin Moose	Not Available		
69	400kV	Oral-Paricha	2	D/C	111	UPPTCL	UPPTCL	UPRVUNL	Twin Moose	Not Available		

70	400kV	Panki-Aligarh	1	S/C	285	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (24%)	
71	400kV	Rewa road -Panki	1	S/C	210	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	LILO of Bara-Panki at 400kV Rewa Road
72	400kV	Rosa-Badaun	1	D/C	85	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
73	400kV	Rosa-Badaun	2	D/C	85	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
74	400kV	Sarnath-Azamgarh	1	S/C	97	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
75	400kV	Lucknow_1(PG)-Mohanlalganj (PGYTL)	1	S/C	58	UPPTCL	POWERGRID	UPPTCL	Twin Moose	LILO of 400kV	Conventional	
76	400kV	Sultanpur(UP)-Mohanlalganj (PGYTL)	1	S/C	133	UPPTCL	UPPTCL	UPPTCL	Twin Moose	LUCKNOW(PG)-	Conventional	
77	400kV	Sultanpur-Tanda	1	D/C	103	UPPTCL	UPPTCL	NTPC	Twin Moose		Not Available	
78	400kV	Tanda-Basti	1	D/C	44	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
79	400kV	Tanda-Basti	2	D/C	44	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
80	400kV	Mohanlalganj (PGYTL)-Unnao(UP)	1	S/C	104	UPPTCL	UPPTCL	UPPTCL	Twin Moose	LILO of 400 KV	Partial (13%)	Status after LILO2
81	400kV	Lucknow(UP)-Mohanlalganj (PGYTL)	1	S/C	89	UPPTCL	UPPTCL	UPPTCL	Twin Moose	SAROJANI	Partial (13%)	
82	400kV	Unnao-Panki	1	S/C	49	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (41%)	
83	400kV	Varanasi-Jaunpur	1	D/C	73	UPPTCL	POWERGRID	UPPTCL	Twin Moose		Not Available	
84	400kV	Varanasi-Jaunpur	2	D/C	73	UPPTCL	POWERGRID	UPPTCL	Twin Moose		Not Available	
85	400kV	Jaunpur (UP)-Obra_B(UP)	1	D/C	177	UPPTCL	UPPTCL	UPPTCL	Twin Moose	After LILO of 400 KV	Not Available	
86	400kV	Obra_C_TPS(UP)-Jaunpur (UP)	1	D/C	176	UPPTCL	UPPTCL	UPPTCL	Twin Moose	OBRA B- OBRA-C CKT-	Not Available	
87	400kV	Sambhal-Rampur	1	D/C	74	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
88	400kV	Sambhal-Rampur	2	D/C	74	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
89	400kV	Simbholi-Meerut_PMSTL	1	D/C	29	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
90	400kV	Simbholi-Meerut_PMSTL	2	D/C	29	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
91	400kV	Simbholi_PMSTL (UP)-Muradnagar_2(UP)	1	D/C	71	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
92	400kV	Simbholi_PMSTL (UP)-Muradnagar_2(UP)	2	D/C	71	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
93	400kV	Panki-Panki_TPS	1	S/C	1	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
H. PJFT	L											
1	400kV	Firozabad-Jawaharpur	1	D/C	40	PJFTL	PJFTL	UPRVUNL	Quad Moose	Anti-theft charging	Not Available	
2	400kV	Firozabad-Jawaharpur	2	D/C	40	PJFTL	PJFTL	UPRVUNL	Quad Moose	from Firozabad(PJFTL)	Not Available	
3	400kV	Agra South-Firozabad PJFTL	1	D/C	79	PJFTL	UPPTCL	PJFTL	Twin Moose	LILO of 400kV Agra South-Agra Fatehabad ckt-2 at Firozabad PJFTL	Not Available	
4	400kV	Agra(Fatehabad)-Firozabad PJFT	1	D/C	79	PJFTL	UPPTCL	PJFTL	Twin Moose		Not Available	
I. GTL												
1	400kV	Kanpur(PG)-Ghatampur_TPS(UP)	1	D/C	49	GTL	POWERGRID	UPPTCL	Twin Moose	Antitheft charging from	Not Available	
2	400kV	Kanpur(PG)-Ghatampur_TPS(UP)	2	D/C	49	GTL	POWERGRID	UPPTCL	Twin Moose	Kanpur(PG) Upto DEAD	Not Available	
J. HPPT	CL											_
1	400kV	Lahal-Chamba	1	D/C	35	HPPTCL	HPPTCL	POWERGRID	Twin Moose		Not Available	
2	400kV	Lahal-Chamba	2	D/C	35	HPPTCL	HPPTCL	POWERGRID	Twin Moose		Not Available	
K. NTPC	VL	I										_
1	400kV	Dadri-Loni (Harsh Vihar)	1	D/C	54	NTPC	NTPC	DTL	Twin Moose		Polymer	
2	400kV	Dadri-Loni (Harsh Vihar)	2	D/C	54	NTPC	NTPC	DTL	Twin Moose		Polymer	
L. MTSC	L											_
1	400kV	Ajmer-Deedwana	1	S/C	110	MTSCL	RRVPNL	MTSCL	Twin Moose		Not Available	
2	400kV	Bikaner-Deedwana	1	S/C	129	MTSCL	RRVPNL	MTSCL	Twin Moose		Conventional	
M. Arav	ali Transmission S	ervice Company Ltd (ATSCL)										
1	400kV	Alwar-Hindaun	1	s/c	96	ATSCL	ATSL	RRVPNL	Twin Moose		Not Available	Partly owned by Aravali Transmission Services ILtd.
N. BBM	B				L							
1	400kV	Dehar-Rajpura	1	s/c	129	BBMB	BBMB	PSTCL	Twin Morkulla+ LILO portion is of twin moose	Dehar-Bhiwani LILOed at Rajpura	Antifog	LILO of Dehar-Bhiwani at Raipura
2	400kV	Bhiwani(BBMB)-Rajpura	1	S/C	213	BBMB	BBMB	PSTCL		Dehar-Bhiwani LILOed at Rajpura	Antifog	

3	400kV	Dehar-Panchkula Panchkula-Paninat	1	s/c	125	BBMB	BBMB	POWERGRID	Twin Morkulla+ LILO portion is of twin moose	POWERGRID owned LILO portion of 9.034Km	Antifog	LILO of Dehar-Panipat at Panchkula
OTHE	R DEDICATED I	LINES	-	5, 5	100	55115	1 Official and	001110				
A. THDO	2											
1	400kV	Aligarh-Khurja	1	D/C	35	THDC	POWERGRID	THDC	Twin Moose		Not Available	
2	400kV	Aligarh-Khurja	2	D/C	35	THDC	POWERGRID	THDC	Twin Moose		Not Available	
5. 40	0kV Transmi	ssion Line charged at 220kV										
STATE	LINES											
A. RRVI	PNL											_
1	400kV charged at 220kV	Dholpur-Hindaun	1	S/C	100	RRVPNL	RRVUNL	RRVPNL	Twin Moose		Conventional	
2	400kV charged at 220kV	Kota-KTPS	1	D/C	7	RRVPNL	POWERGRID	RRVUNL	Twin Moose		Conventional	
3	400kV charged at 220kV	Kota-KTPS	2	D/C	7	RRVPNL	POWERGRID	RRVUNL	Twin Moose		Conventional	

* - Fixed series capacitor (FSC) is owned by POWERGRID

National Load Despatch Centre Import Capability of Punjab for December 2024

\ Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	10300	500	9800	5497	4303		https://www.punjab sldc.org/ATC_TTC.as px
Limiting Constr	aints	N-1 contigency of 400 Loading close to N-1 c 220 kV underlying net	i/220KV ICT at Rajpura contingency limits of 40 twork at Jalandhar, Luc	, Ludhiana, Jalandhar, 00/220kV Patran, Male dhiana and Amritsar	Muktsar erkotla and Patiala ICTs	5		

National Load Despatch Centre Import Capability of Uttar Pradesh for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	17300	600	16700	10165	6535		https://www.upsldc.or g/documents/20182/0/ ttc_atc_24-11- 16/4c79978e-35f2-4aef 8c0f-7f30d878dbde
Limiting Constraints		N-1 contingency o	f 400/220kV Obra,	Allahabad(PG), Go	rakhpur (UP), Agra	(PG), Lucknow (PG) ICT	S	

National Load Despatch Centre Import Capability of Haryana for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments	
1st December 2024 to 31st December 2024	00-24	10300	300	10000	5418	4582		https://hvpn.org. in/#/atcttc	
Limiting Constraints		N-1 contingency of 400/220kV ICT at Deepalpur, Hisar, Kabulpur and Panipat(BBMB)							

National Load Despatch Centre Import Capability of Rajasthan for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	7600	600	7000	5755	1245		https://sldc.rajast han.gov.in/rrvpnl /scheduling/dow nloads
Limiting Con	straints	N-1 contingency o	f 400/220kV Heera	ipura, Jodhpur, Bik	aner, Ajmer, Merta, H	indaun and Ratang	garh ICTs	

National Load Despatch Centre Import Capability of Delhi for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	7300	300	7000	4810	2190		https://www.del hisldc.org/resour ces/atcttcreport. pdf
Limiting Con	straints	N-1 contingency o	f 400/220kV Mund	lka, HarshVihar and	d Bawana (bus-split) IC	Ts.		

National Load Despatch Centre Import Capability of Uttarakhand for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	1710	100	1610	1402	208		<u>https://uksldc.in/ttc-</u> atc
Limiting Constraints		N-1 contingency of 40	0/220kV Kashipur ICT	s. High loading of 220k	V Roorkee-Roorkee ar	id 220kV CBGanj-Pantr	nagar lines	

National Load Despatch Centre Import Capability of HP for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	2386	100	2286	1130	1156		https://hpsldc.com/ mrm_category/ttc- atc-report/_
Limiting Constr	aints	Overloading of 2*100	MVA Giri transformers	5				

National Load Despatch Centre Import Capability of J&K for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	3200	100	3100	1977	1123		
Limiting Constr	aints	N-1 contigency of 400 220 kV underlying net	/220KV ICTs at Amarg work at Amargarh, Wa	arh agoora				

National Load Despatch Centre Import Capability of Chandigarh for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	400	20	380	342	38		
Limiting Constr	aints	N-1 contigency of 220	kV Nallagarh-Kishenga	arh				

CENTRAL ELECTRICITY REGULATORY COMMISSION (NEW DELHI)

Suo-Motu Petition No. 9/SM/2024

Coram: Shri Jishnu Barua, Chairperson Shri Ramesh Babu V., Member Shri Harish Dudani, Member

Date of Order: 7th October, 2024

In the matter of :

Planning for safe, secure, and reliable integrated operation of the power system during critical periods arising on account of seasonal variations wherein the electricity demand increases rapidly by undertaking specific measures to mitigate the risks on the power system, under clause (h) of sub-section (1) of Section 79 of the Electricity Act, 2003 and the Regulation 31 of the Central Electricity Regulatory Commission (Indian Electricity Grid Code) Regulations, 2023.

And in the matter of :

- National Load Despatch Centre, Grid Controller of India Ltd. (CIN U40105DL2009GOI188682) B-9 (1st Floor), Qutab Institutional Area, Katwaria Sarai, New Delhi -110016
- Northern Regional Load Despatch Centre, Grid Controller of India Ltd.
 18-A, Shaheed Jeet Singh Sansanwal Marg, Katwaria Sarai, New Delhi -110016
- Western Regional Load Despatch Centre, Mumbai Grid Controller of India Ltd.
 F-3, M.I.D.C. Area, Marol Andheri (East), Mumbai -400093
- Southern Regional Load Despatch Centre 29, Race Course Cross Road, Bangalore -560009

- 5. Eastern Regional Load Despatch Centre, Kolkata Grid Controller of India Ltd. 14, Golf Club Road, Tollygunge, Kolkata -700 03
- North Eastern Load Despatch Centre, Shillong Grid Controller of India Ltd. Lower, Nongrah, Lapalang, Shillong, Meghalaya 793006
- The Chief Engineer, State Load Dispatch Centre, SLDC Complex. PSTCL, Near 220 kV G/Stn, Ablowal, Patiala- 147001
- The Chief Engineer (LD), Electricity Department, UT Secretariat, Sector - 9D, UT of Chandigarh-160009
- 9. The Managing Director, Himachal Pradesh Power Transmission Corporation Limited, Barowalias House, Khalini,Shimla-171002
- The Executive Director, State Load Despatch Centre, Delhi Transco Ltd, 33kV Substation Building, Minto Road, New Delhi, 110002
- 11. The Superintending Engineer
 State Load Dispatch Centre.
 Rajasthan Rajya Vidua Prasaran Nigam Limited.
 Ajmer Road, Heerapur. Jaipur 302004
- 12. The Managing Director,
 Slate Load Despatch Centre,
 Haryana,
 Behind BBMB Power house,
 Sewah, Panipat, Haryana 132103
- 13.The Chief Engineer State Load Despatch Center, SLDC Complex TOTU, Shimla, Himachal Pradesh-17 10 1 1
- 14. The Director, State Load Despatch Centre,

Uttar Pradesh Power Transmission Corporation Limited (UPPTCL), Phase II, Vibhuti Khand, Lucknow- 226001

- 15.The Chief Engineer, State Load Dispatch Centre, Vidyut Bhawan, Saharanpur Road Majra, Near ISBT Dehradun-248001 Uttarakhand
- 16.The Chief Engineer, Maharashtra State Load Dispatch Centre, Thane-Belapur Road. Airoli Navi Mumbai-400 708
- The Chief Engineer, State Load Despatch Centre, Gujrat Energy Transmission Corporation Limited (GETCO), GSSC Compound Near TB Hospital, Gotri Road, Gotri, Vadodara - 390 021
- 18.The Chief Engineer (LD), State Load Despatch Centre (SLDC), Chhattisgarh State Power Transmission Co. Ltd. Danganiya, Raipur, Chhattisgarh- 492013
- 19. The Chief Engineer,State 3 Despatch Centre,MP Power Transmission Co. LtdNayagaon, Rampur, Jabalpur-482008
- 20. The Chief Engineer (Electrical), State Load Despatch Centre (SLDC), Race Course Cross Road, A. R. Circle, Bengaluru-560009
- 21.The Chief Engineer,

State Load Despatch Centre (SLDC), Transmission corporation of Andhra Pradesh Limited (APTRANSCO), Vidvut Soudha, Gunadala, Eluru Road Vijayawada, Andhra Pradesh 520004

 The Chief Engineer/Operation, State Load Dispatch Centre, Tamil Nadu Transmission Corporation Limited (TANTRANSCO), 144 Anna Salai, Chennai- 600002

23. The Chief Engineer,

State Load Despatch Centre (SLDC), Transmission Corporation of Telangana Ltd. (TSTRANSCO), Vidvut Soudha, Khairatabad. Hyderabad- 500 082

- 24. The Chief Engineer (Transmission- System Operation), State Load Despatch Centre (SLDC) Vaidyuthi Bhavanam, Pottam, Trivandrum- 695 009 Kerala
- 25. The Chief Engineer (TRANS., O&M),
 State Load Despatch Center (SLDC),
 Bihar State Power Transmission Company Limited (BSPTCL),
 4th Floor, Vidyut Bhawan, Bailey Road, Patna-1
- 26. The Chief Load Despatcher, State Load Despatch Centre (SLDC), SLDC Building. GR1DCO Colony, P.O. Mancheswar Railway Colony, Bhubaneswar- 751017
- 27.The Chief Engineer, State Load Despatch Center, Jharkhand Urja Sancharan Nigam Limited, Engineering Building, H.E.C., Dhurwa. Ranchi – 834004
- 28. The Chief Engineer, West Bengal State Load Despatch Centre WBSLDC), Danesh Seikh Lane, Andul Road, Howrah-711109
- 29. The Additional Chief Engineer, State Load Despatch Centre (SLDC), Power Department, Govt. of Sikkim, Gangtok-737201
- 30. The Chief Engineer, State Load Despatch Centre (SLDC), Damodar Valley Corporation (DVC), Danesh Saikh Lane, Andul Road, Howarh 711109
- 31. The Executive Engineer (SLDC),
 Department of Power,
 Government of Arunachal Pradesh,
 National Highway 52A, Vidyut Bhawan, Itanagar-791111
- 32. The Asst. General Manager, SLDC Division, Assam Electricity Grid Corporation Ltd.,

ASEB Colony, Power House Kahilipara, Guwahati-781 019

- 33. The Superintending Engineer, P&E Office Complex, North Block (III Floor) Electric Veng, Aizawl- 796001, Mizoram.
- 34. The Superintending Engineer,
 Load Despatch Centre
 Meghalaya Power Transmission Corporation Limited,
 Short Round Road,
 Lum Jingshai, Meghalaya, Shillong 793022.
- 35. The Chief Engineer, Department of Power Govt. of Nagaland, Kohima-797 001
- 36. The General Manager, State Load Despatch Centre Manipur State Power Company Ltd (MSPCL) Electricity Complex, Keisumphat Junction, Imphal-795001, Manipur.
- 37. The Director (Tech.),Tripura State Electricity Corporation Ltd (TSECL),Banamalipur, Agartala -799 001
- 38. Northern Regional Power Committee, New Delhi Shaheed Jeet Singh Marg, Qutab Institutional Area, New Delhi -110016
- 39. Western Regional Power Committee, Mumbai M.I.D.C. Central Road, Krantiveer Lakhuji Salve Marg, Seepz, Andheri East, Mumbai, Maharashtra-400093
- Southern Regional Power Committee, 29, Race Course Rd, Nehru Nagar, Gandhi Nagar, Bengaluru, Karnataka 560009
- 41. Eastern Regional Power Committee, Kolkata 14, Golf Club Rd, Golf Gardens, Tollygunge, Kolkata, West Bengal- 70003316
- 42. North Eastern Regional Power Committee, Jowai Rd, Umpling, Shillong,

Meghalaya-793006

43. Central Electricity Authority, Sewa Bhawan, R. K. Puram, Sector-1, New Delhi

....Respondents

<u>ORDER</u>

This Commission, in the exercise of the powers conferred under Section 178 read with Section 79(1)(h) of the Electricity Act, 2003 (hereinafter referred to as "the Act"), has specified CERC (Indian Electricity Grid Code), Regulations 2023 (hereinafter referred as "the Grid Code") on 29.05.2023 effective from 1.10.2023. Section 28(2) of the Act provides that the Regional Load Despatch Centre shall comply with such principles, guidelines and methodologies in respect of wheeling and optimum scheduling and despatch of electricity as the Central Commission may specify in the Grid Code. Section 29(1) of the Act provides that the Regional Load Despatch Centre shall issue such directions and exercise such supervision and control as may be required for ensuring the stability of the grid operation and for achieving the maximum economy and efficiency in the operation of the power system in the region under its control. Section 33(3) of the Act provides that the State Load Despatch Centre shall comply with the directions of the Regional Load Despatch Centre ("RLDC"). Section 29(4) of the Act provides that the Regional Power Committee in the region may, from time to time, agree on matters concerning the stability and smooth operation of the integrated grid and the economy and efficiency of the power system within the region. Therefore, the Act envisages and assigns responsibilities to the

Regional Load Despatch Centres and State Load Despatch Centres as apex bodies at the regional level and state level, respectively, to ensure safe, secure, stable, and integrated operation of the power system in the respective region or the state, as the case may be, and to the Regional Power Committees to coordinate among the constituents in their respective regions to achieve agreement with regard to stability and smooth operation of the integrated grid.

2. Regulation 31 of the Grid Code provides for the time horizon for operational planning, demand estimation, generation estimation, and adequacy of resources for the purpose of operational planning in the following manner: -

(a) For operational planning, National Load Despatch Centre, Regional Load Despatch Centres, and State Load Despatch Centres have been assigned the responsibility to carry out operational planning within their respective control areas on Intra-day, Day Ahead, and Weekly time horizons.

(b) For demand estimation, the State Load Despatch Centres are mandated to carry out demand estimation as part of operational planning for both active power and reactive power incidents on the transmission systems based on the details collected from distribution licensees, grid-connected distributed generation resources, captive power plants and other bulk consumers embedded within the State and to estimate the peak and off-peak demand on a weekly and monthly basis for load - generation balance planning as well as for operational planning. Based on the demand estimate furnished by SLDCs and other entities directly connected to the ISTS, RLDCs shall prepare regional demand estimates based on which NLDC shall prepare national demand estimates.

(c) For generation estimation, RLDCs have been mandated to forecast generation from wind, solar, ESS, and renewable energy hybrid generating stations, which are regional entities, and SLDCs have been mandated to forecast generation from such resources which are intra-State entities for different time horizons, for the purpose of operational planning.

(d) SLDCs are required to estimate and ensure adequacy of resources, identify generation, demand response capacity, and generation flexibility requirements, and furnish time block-wise information for the following day in respect of all intra-State entities to the concerned RLDCs who shall validate the adequacy of resources with due regard to the aggregated demand forecast for the control area, renewable energy generation forecast for the control area, injection schedule of intra-State entity generating stations, requisition from regional entity generating stations, secondary and planned procurement through tertiary reserve requirements, and planned procurement through bilateral or collective transactions.

3. Regulation 33 provides that based on the operational planning analysis data, NLDC, RLDCs, and SLDCs shall carry out operational planning studies in real time, intra-day, day-ahead, and weekly basis, and RPCs shall carry out operational planning studies on monthly/yearly basis. This Regulation further provides that operational studies shall be carried out to assess whether the planned operations would result in deviations from any of the operational limits defined under the Grid Code and applicable standards issued by the Central Electricity Authority. Regulation 33 further enjoins upon Regional Power Committees to monitor significant deviations for early resolution. NLDCs, RLDCs, RPCs, and SLDCs are required to develop operating plans to address potential deviation from system operational limits identified as a result of the operational planning study and communicate the same to the users in advance for taking corrective measures. The detailed reasons and explanations given by the users shall be discussed in the monthly operation sub-committee of the respective regions, and quarterly reports shall be submitted by RPCs to the Commission and CEA.

4. An extract of Regulations 31 and 33 of the Grid Code is enclosed in this order for the convenience of reference.

5. The Commission sought details of the load-generation scenario for the months of September and October 2024 from NLDC, followed by meetings of the Commission with the officers of NLDC. NLDC has submitted forecast scenarios for the months of September 24 and October 2024. The NLDC has also conducted the meeting of the Forum of Load Despatchers to ensure the proper projection of demand by the State Load Despatch Centre. We have considered the peak demand forecast for the month of October 2024. A summary of these scenarios is as under:-

("" 677)	
Oct-24	
Demand Forecast	
230	
232.2	
59.4	
172.8	
187.9	
Estimated Thermal Generation	
182.20	
Availability of generation required	
5.7	
12.60	

 Table 1: Peak demand forecast and load generation balance during Oct-24

 (in GW)

It is observed from the above table that the projected load generation balance based on peak demand during October 2024 indicates the requirement for additional generation. The rise in demand during solar generation hours can be met from renewable generation provided the solar generation is as per the past trends. However, during non-solar hours (including evening and morning peaks), there is a requirement of additional requirement of Generation resources of about 12.60 GW with a reserve requirement of 3% to meet contingency.

6. The Grid Code enjoins the responsibility upon all concerned stakeholders to ensure stable and economic operation of power system and resolve the issues of significant deviations, if any. The Commission, taking cognizance of the previous year's record, intends to impress upon all the stakeholders that there is an imperative need for prudent planning of load generation balance and issue of alerts to all the gridconnected user entities of the concerned control areas to make them aware about the anticipated challenges in the operation of the power system and for undertaking the preventive measures as may be required to maintain load generation balance.

7. The Commission is of the view that there is a need to sensitize all the stakeholders, monitor their actions, and bring about behavioural changes through specific and proactive regulatory interventions The Commission believes that it is advisable to take preventive *ex-ante* measures instead of the ex-post reactive measures of finding instances of violation of the Grid Code, initiating penal proceedings for violation, and imposing penalty under the provisions of the Act. This proactive approach would also help to encourage collective efforts on the part of the National Load Despatch Centre, Regional Load Despatch Centres, State Load Despatch Centres, and the grid connected entities to make concerted efforts to ensure stable and economic operation of the grid.

8. The projected requirement of generation is significantly higher than the annual growth of the electricity demand and the addition of generation capacity. The projected requirement of thermal generation during October, 2024 needs proper operational planning and adequacy of resources in terms of Regulation 31(4) of the Grid Code. Any uncertain variation in the electricity demand arising on account of seasonal variations leading to a rapid increase in demand causes undesirable stress in the power system. The steep rise in electricity demand without adequate generation sources may put the power system operation at risk. It is the statutory responsibility of the RLDCs and SLDCs to carry out the operational planning for the increase in demand due to seasonal variations while discharging their functions under Sections 28

and 32 of the Act, respectively, read with the provisions of Regulations 31 and 33 of the Grid Code. 12. In light of the above, the Commission feels that there is a need to prepare the system operators and the stakeholders to meet the situation arising out of the abrupt increase in demand due to seasonal variations, especially during October 2024. Regulation 60 of the Grid Code empowers the Commission to issue practice directions through suo-moto proceedings with regard to implementation of the provisions of the said Regulations. Regulation 60 of the Grid Code is extracted as under:-

"60. Issue of Suo Motu Orders and Directions

The Commission may from time to time issue suo motu orders and practice directions with regard to implementation of these regulations and matters incidental or ancillary thereto, as the case may be."

9. In exercise of the powers vested under Regulation 60, read with all relevant provisions of the Grid Code, the Commission issues the following directions to NLDC, RLDCs, and SLDCs in connection with the implementation of Regulations 31 and 33 of the Grid Code to address the anticipated surge in demand of electricity during October 2024 on account of seasonal variations:

- a) All the State Load Despatch Centres and RLDCs shall furnish the details of operational planning undertaken by them in terms of Regulation 31(4) (a) of the Grid Code especially for October 2024. RLDC shall validate the adequacy of resources in terms of Regulation 31(4)(b) of the Grid Code.
- b) All State Load Despatch Centres and Regional Load Despatch Centres shall prepare the worst-case scenario due to possible surge in demand during the

period 1.10.2024 to 31.10.2024 in their respective control area and submit within seven days to the Commission with a copy to National Load Despatch Centre.

- c) The State Load Despatch Centres or Regional Load Despatch Centres, as the case may be, should assess their demand-generation scenario in the upcoming months, ensure the optimum generation, avoid undesirable planned outages, and advise the generating company to offer their availability. The State Load Despatch Centre or Regional Load Despatch Centre shall ensure the optimum scheduling during the shortage period and surplus power to get despatched during the deficit period.
- d) The Distribution Companies, in case of a shortage scenario, can procure the power from surplus or requisitioned capacity of other states so that optimum despatch can be ensured for safe and reliable power system operations. The State Load Despatch Centre shall monitor the generation-demand deficit of the respective distribution companies.
- e) The generating companies operating their plant with capacity less than its installed capacity due to technical issues, i.e., capacity under partial outage or forced outage, are advised to fix the issues to ensure the maximum generation capacity on-bar.
- f) The draw schedule of the respective control area needs to adhere to prevent the reduction of system frequency. The State Load Despatch Centre or Regional Load Despatch Centre, as the case may be, shall monitor the deviation of the key system parameters.

g) The State Load Despatch Centres or Regional Load Despatch Centres, as the case may be, shall issue the system alerts to their respective grid-connected entities for the possible deficit during the likely surge in demand.

10. The Regional Load Despatch Centres and State Load Despatch Centres shall submit the report on the implementation of the above measures, a load-generation scenario in their respective control areas, and any other measures taken to address the deficit of power supply during the period 1.10.2024 to 31.10.2024.

11. The objective of the present proceedings is to prepare the system operators and other stakeholders to meet the challenges and threats to the power system that may arise due to the abrupt increase in demand. The responses of the SLDCs, RLDCs, and NLDC with regard to the implementation of the measures detailed in para 9 of this order shall, in the first instance, be examined in detail by a Single-Member Bench comprising a Member of the Commission. Accordingly, in the exercise of powers under Section 97 of the Electricity Act, 2003, the Commission nominates Shri Ramesh Babu V., Member, to conduct the proceedings for this purpose. The Single Member Bench shall provide due opportunity to the parties to make their submissions. The Single Member Bench shall have the authority to direct the parties to submit such further information and to take such remedial measures as may be considered necessary. The Single Member Bench shall submit a report to the Commission with regard to the preparedness of the System Operators and other stakeholders to meet the challenges arising on account of the sudden surge in demand for power and his recommendations with regard to the remedial measures to be taken for the future. The

Commission, after consideration of the report of the Single Member Bench shall issue appropriate directions as may be considered appropriate.

12. NLDC, RLDCs, and SLDCs are directed to submit their responses to the measures contained in para 9 of this order by 16.10.2024.

Sd./-Sd./-(Shri Harish Dudani)(Shri Ramesh Babu V)MemberMember

Sd./-(Shri Jishnu Barua) Chairperson

Extract of Regulation 31 and 33 of the Grid Code

31. OPERATIONAL PLANNING

- (1) Time Horizon
 - (a) Operational planning shall be carried out in advance by NLDC, RLDCs and SLDCs within their respective control areas with Monthly and Yearly time horizons in co-ordination with CTU, RPCs or STUs, as applicable.
 - (b) Operational planning shall be carried out in advance by NLDC, RLDCs and SLDCs within their respective control areas on Intra-day, Day Ahead, Weekly time horizons.
 - (c) RLDCs in consultation with NLDC shall issue procedures and formats for data collection to carry out:
 - (i) Operational planning analysis,
 - (ii) Real-time monitoring,
 - (iii) Real-time assessments.
 - (d) SLDC may also issue procedures and formats for data collection for the above purposes.
- (2) Demand Estimation
 - (a) Each SLDC shall carry out demand estimation as part of operational planning after duly factoring in the demand estimation done by STU as part of resource adequacy planning referred to in Chapter 2 of these regulations. Demand estimation by SLDC shall be for both active power and reactive power incidents on the transmission system based on the details collected from distribution licensees, grid-connected distributed generation resources, captive power plants and other bulk consumers embedded within the State.

- (b) Each SLDC shall develop methodology for daily, weekly, monthly, yearly demand estimation in MW and MWh for operational analysis as well as resource adequacy purposes. Each SLDC, while estimating demand may utilize state of the art tools, weather data, historical data and any other data. For this purpose, all distribution licensees shall maintain a historical database of demand.
- (c) The demand estimation by each SLDC shall be done on day ahead basis with time block wise granularity for the daily operation and scheduling. In case SLDC observes a major change in demand in real time for the day, it shall immediately submit the revised demand estimate to the concerned RLDC for demand estimate correction.
- (d) Each SLDC shall submit node-wise morning peak, evening peak, day shoulder and night off-peak estimated demand in MW and MVA on a monthly and quarterly basis for the nodes 110 kV and above for the preparation of scenarios for computation of TTC and ATC by the concerned RLDC and NLDC.
- (e) SLDC shall also estimate peak and off-peak demand (active as well as reactive power) on a weekly and monthly basis for load - generation balance planning as well as for operational planning analysis, which shall be a part of the operational planning data. The demand estimates mentioned above shall have granularity of a time block. The estimate shall cover the load incident on the grid as well as the net load incident taking into account embedded generation in the form of roof-top solar and other distributed generation.
- (f) The entities such as bulk consumers or distribution licensees that are directly connected to ISTS shall estimate and furnish such a demand estimate to the concerned RLDC.
- (g) Based on the demand estimate furnished by the SLDCs and other entities directly connected to ISTS, each RLDC shall prepare the regional demand estimate and submit it to the NLDC. NLDC, based on regional demand estimates furnished by RLDCs, shall prepare national demand estimate.

- (h) Timeline for submission of demand estimate data by SLDCs or other entities directly connected to ISTS, as applicable, to the respective RLDC and RPC shall be as follows:
- (i) SLDCs, RLDCs and NLDC shall compute forecasting error for intra-day, dayahead, weekly, monthly and yearly forecasts and analyse the same in order to reduce forecasting error in the future. The computed forecasting errors shall be made available by SLDCs, RLDCs and NLDC on their respective websites.
- (3) Generation Estimation
 - (a) The modalities of generation estimation by entities shall be as per the Procedure referred to in sub-clause (c) of clause (1) of Regulation 31 of these regulations.
 - (b) RLDC shall forecast generation from wind, solar, ESS and Renewable Energy hybrid generating stations that are regional entities and SLDC shall forecast generation from such sources that are intra-state entities, for different time horizons as referred to in clause (1) of Regulation 31 of these regulations for the purpose of operational planning.
- (4) Adequacy of Resources
 - (a) SLDCs shall estimate and ensure the adequacy of resources, identify generation reserves, demand response capacity and generation flexibility requirements with due regard to the resource adequacy framework as specified under Chapter 2 of these regulations.
 - (b) SLDCs shall furnish time block-wise information for the following day in respect of all intra-state entities to the concerned RLDC who shall validate the adequacy of resources with due regard to the following:
 - (i) Demand forecast aggregated for the control area;
 - (ii) Renewable energy generation forecast for the control area;

- (iii) Injection schedule for intra-State entity generating station;
- (iv) Requisition from regional entity generating stations;
- (v) Secondary and planned procurement through Tertiary reserve requirement;
- (vi) Planned procurement of power through other bilateral or collective transactions, if any.

33. OPERATIONAL PLANNING STUDY

- Based on the operational planning analysis data, operational planning study shall be carried out by various agencies for time horizons as under:
- (2) SLDCs, RLDCs and NLDC shall utilize network estimation tool integrated in their EMS and SCADA systems for the real time operational planning study. All users shall make available at all times real time error free operational data for the successful execution of network analysis using EMS/SCADA. Failure to make available such data shall be immediately reported to the concerned SLDC, the concerned RLDC and NLDC along with a firm timeline for restoration. The performance of online network estimation tools at SLDC and RLDC shall be reviewed in the monthly operational meeting of RPC. Any telemetry related issues impacting the online network estimation tool shall be monitored by RPC for their early resolution.
- (3) SLDCs shall perform day-ahead, weekly, monthly and yearly operational studies for the concerned State for:
 - (a) assessment and declaration of total transfer capability (TTC) and available transfer capability (ATC) for the import or export of electricity by the State. TTC and ATC shall be revised from time to time based on the commissioning of new elements and other grid conditions and shall be published on SLDC website with all the assumptions and limiting constraints;

- (b) planned outage assessment;
- (c) special scenario assessment;
- (d) system protection scheme assessment;
- (e) natural disaster assessment; and
- (f) any other study relevant in operational scenario.
- (4) RLDCs and NLDC shall perform day-ahead, weekly, monthly and yearly operational studies for:

(a) assessment of TTC and ATC at inter-regional, intra-regional, and inter-state levels;

- (b) planned outage assessment;
- (c) special scenario assessment;
- (d) system protection scheme assessment;
- (e) natural disaster assessment; and
- (f) any other study relevant to operational scenarios
- (5) RLDC shall assess intra-regional and inter-state level TTC and ATC and submit them to NLDC. NLDC shall declare TTC and ATC for import or export of electricity between regions including simultaneous import or export capability for a region, and crossborder interconnections 11 (Eleven) months in advance for each month on a rolling basis. TTC and ATC shall be revised from time to time based on the commissioning of new elements and other grid conditions and shall be published on the websites of the NLDC and respective RLDCs with all the assumptions and limiting constraints
- (6) Operational planning study shall be done to assess whether the planned operations shall result in deviations from any of the system operational limits defined under these regulations and applicable CEA Standards. The deviations, if

any, shall be reviewed in the monthly operational meeting of RPC and significant deviations shall be monitored by RPC for early resolution.

- (7) NLDC, RLDCs, RPCs and SLDCs shall maintain records of the completed operational planning study, including date specific power flow study results, the operational plan and minutes of meetings on operational study.
- (8) NLDC, RLDCs, RPCs and SLDCs shall have operating plans to address potential deviations from system operational limit identified as a result of the operational planning study. These operating plans shall be communicated to users in advance so that they can take corrective measures. In case any user is unable to adhere to such an operating plan, it shall inform the respective SLDC, RLDC and NLDC in advance with detailed reasons and explanations for the non-adherence. These detailed reasons and explanations shall be discussed in the monthly operation sub-committee of the respective region and a quarterly report shall be submitted by the respective RPC to the Commission and CEA.
- (9) Each SLDC shall undertake a study on the impact of new elements to be commissioned in the intra-state system in the next six (6) months on the TTC and ATC for the State and share the results of the studies with RLDC.
- (10) Each RLDC shall undertake a study on the impact of new elements to be commissioned in the next six (6) months in (a) the ISTS of the region and (b) the intrastate system on the inter-state system and share the results of the studies with NLDC
- (11) NLDC shall undertake study on the impact of new elements to be commissioned in the next six (6) months in (a) inter-regional system, (b) cross-border link and (c) intraregional system on the inter-regional system.
- (12) NLDC, RLDCs and SLDCs shall compare the results of the studies of the impact of new elements on the system and transfer capability addition with those of the interconnection and planning studies by CTU and STUs, and any significant

variations observed shall be communicated to CEA, RPCs, CTU and STUs for immediate and long-term mitigation measures.

(13) Defense mechanisms like system protection scheme, load-rejection scheme, generation run-back, islanding scheme or any other scheme for system security shall be proposed by the concerned user or SLDC or RLDC or NLDC and shall be deployed as finalized by the respective RPC.

CENTRAL ELECTRICITY REGULATORY COMMISSION (NEW DELHI)

Suo-Motu Petition No. 9/SM/2024

Coram: Shri Jishnu Barua, Chairperson Shri Ramesh Babu V., Member Shri Harish Dudani, Member

Date of Order: 7th October, 2024

In the matter of :

Planning for safe, secure, and reliable integrated operation of the power system during critical periods arising on account of seasonal variations wherein the electricity demand increases rapidly by undertaking specific measures to mitigate the risks on the power system, under clause (h) of sub-section (1) of Section 79 of the Electricity Act, 2003 and the Regulation 31 of the Central Electricity Regulatory Commission (Indian Electricity Grid Code) Regulations, 2023.

And in the matter of :

- National Load Despatch Centre, Grid Controller of India Ltd. (CIN U40105DL2009GOI188682) B-9 (1st Floor), Qutab Institutional Area, Katwaria Sarai, New Delhi -110016
- Northern Regional Load Despatch Centre, Grid Controller of India Ltd.
 18-A, Shaheed Jeet Singh Sansanwal Marg, Katwaria Sarai, New Delhi -110016
- Western Regional Load Despatch Centre, Mumbai Grid Controller of India Ltd.
 F-3, M.I.D.C. Area, Marol Andheri (East), Mumbai -400093
- Southern Regional Load Despatch Centre 29, Race Course Cross Road, Bangalore -560009

- 5. Eastern Regional Load Despatch Centre, Kolkata Grid Controller of India Ltd. 14, Golf Club Road, Tollygunge, Kolkata -700 03
- North Eastern Load Despatch Centre, Shillong Grid Controller of India Ltd. Lower, Nongrah, Lapalang, Shillong, Meghalaya 793006
- The Chief Engineer, State Load Dispatch Centre, SLDC Complex. PSTCL, Near 220 kV G/Stn, Ablowal, Patiala- 147001
- The Chief Engineer (LD), Electricity Department, UT Secretariat, Sector - 9D, UT of Chandigarh-160009
- 9. The Managing Director, Himachal Pradesh Power Transmission Corporation Limited, Barowalias House, Khalini,Shimla-171002
- The Executive Director, State Load Despatch Centre, Delhi Transco Ltd, 33kV Substation Building, Minto Road, New Delhi, 110002
- 11. The Superintending Engineer
 State Load Dispatch Centre.
 Rajasthan Rajya Vidua Prasaran Nigam Limited.
 Ajmer Road, Heerapur. Jaipur 302004
- 12. The Managing Director,
 Slate Load Despatch Centre,
 Haryana,
 Behind BBMB Power house,
 Sewah, Panipat, Haryana 132103
- 13.The Chief Engineer State Load Despatch Center, SLDC Complex TOTU, Shimla, Himachal Pradesh-17 10 1 1
- 14. The Director, State Load Despatch Centre,
Uttar Pradesh Power Transmission Corporation Limited (UPPTCL), Phase II, Vibhuti Khand, Lucknow- 226001

- 15.The Chief Engineer, State Load Dispatch Centre, Vidyut Bhawan, Saharanpur Road Majra, Near ISBT Dehradun-248001 Uttarakhand
- 16.The Chief Engineer, Maharashtra State Load Dispatch Centre, Thane-Belapur Road. Airoli Navi Mumbai-400 708
- The Chief Engineer, State Load Despatch Centre, Gujrat Energy Transmission Corporation Limited (GETCO), GSSC Compound Near TB Hospital, Gotri Road, Gotri, Vadodara - 390 021
- 18.The Chief Engineer (LD), State Load Despatch Centre (SLDC), Chhattisgarh State Power Transmission Co. Ltd. Danganiya, Raipur, Chhattisgarh- 492013
- 19. The Chief Engineer,State 3 Despatch Centre,MP Power Transmission Co. LtdNayagaon, Rampur, Jabalpur-482008
- 20. The Chief Engineer (Electrical), State Load Despatch Centre (SLDC), Race Course Cross Road, A. R. Circle, Bengaluru-560009
- 21.The Chief Engineer,

State Load Despatch Centre (SLDC), Transmission corporation of Andhra Pradesh Limited (APTRANSCO), Vidvut Soudha, Gunadala, Eluru Road Vijayawada, Andhra Pradesh 520004

 The Chief Engineer/Operation, State Load Dispatch Centre, Tamil Nadu Transmission Corporation Limited (TANTRANSCO), 144 Anna Salai, Chennai- 600002

23. The Chief Engineer,

State Load Despatch Centre (SLDC), Transmission Corporation of Telangana Ltd. (TSTRANSCO), Vidvut Soudha, Khairatabad. Hyderabad- 500 082

- 24. The Chief Engineer (Transmission- System Operation), State Load Despatch Centre (SLDC) Vaidyuthi Bhavanam, Pottam, Trivandrum- 695 009 Kerala
- 25. The Chief Engineer (TRANS., O&M),
 State Load Despatch Center (SLDC),
 Bihar State Power Transmission Company Limited (BSPTCL),
 4th Floor, Vidyut Bhawan, Bailey Road, Patna-1
- 26. The Chief Load Despatcher, State Load Despatch Centre (SLDC), SLDC Building. GR1DCO Colony, P.O. Mancheswar Railway Colony, Bhubaneswar- 751017
- 27.The Chief Engineer, State Load Despatch Center, Jharkhand Urja Sancharan Nigam Limited, Engineering Building, H.E.C., Dhurwa. Ranchi – 834004
- 28. The Chief Engineer, West Bengal State Load Despatch Centre WBSLDC), Danesh Seikh Lane, Andul Road, Howrah-711109
- 29. The Additional Chief Engineer, State Load Despatch Centre (SLDC), Power Department, Govt. of Sikkim, Gangtok-737201
- 30. The Chief Engineer, State Load Despatch Centre (SLDC), Damodar Valley Corporation (DVC), Danesh Saikh Lane, Andul Road, Howarh 711109
- 31. The Executive Engineer (SLDC),
 Department of Power,
 Government of Arunachal Pradesh,
 National Highway 52A, Vidyut Bhawan, Itanagar-791111
- 32. The Asst. General Manager, SLDC Division, Assam Electricity Grid Corporation Ltd.,

ASEB Colony, Power House Kahilipara, Guwahati-781 019

- 33. The Superintending Engineer, P&E Office Complex, North Block (III Floor) Electric Veng, Aizawl- 796001, Mizoram.
- 34. The Superintending Engineer,
 Load Despatch Centre
 Meghalaya Power Transmission Corporation Limited,
 Short Round Road,
 Lum Jingshai, Meghalaya, Shillong 793022.
- 35. The Chief Engineer, Department of Power Govt. of Nagaland, Kohima-797 001
- 36. The General Manager, State Load Despatch Centre Manipur State Power Company Ltd (MSPCL) Electricity Complex, Keisumphat Junction, Imphal-795001, Manipur.
- 37. The Director (Tech.),Tripura State Electricity Corporation Ltd (TSECL),Banamalipur, Agartala -799 001
- 38. Northern Regional Power Committee, New Delhi Shaheed Jeet Singh Marg, Qutab Institutional Area, New Delhi -110016
- 39. Western Regional Power Committee, Mumbai M.I.D.C. Central Road, Krantiveer Lakhuji Salve Marg, Seepz, Andheri East, Mumbai, Maharashtra-400093
- Southern Regional Power Committee, 29, Race Course Rd, Nehru Nagar, Gandhi Nagar, Bengaluru, Karnataka 560009
- 41. Eastern Regional Power Committee, Kolkata 14, Golf Club Rd, Golf Gardens, Tollygunge, Kolkata, West Bengal- 70003316
- 42. North Eastern Regional Power Committee, Jowai Rd, Umpling, Shillong,

Meghalaya-793006

43. Central Electricity Authority, Sewa Bhawan, R. K. Puram, Sector-1, New Delhi

....Respondents

<u>ORDER</u>

This Commission, in the exercise of the powers conferred under Section 178 read with Section 79(1)(h) of the Electricity Act, 2003 (hereinafter referred to as "the Act"), has specified CERC (Indian Electricity Grid Code), Regulations 2023 (hereinafter referred as "the Grid Code") on 29.05.2023 effective from 1.10.2023. Section 28(2) of the Act provides that the Regional Load Despatch Centre shall comply with such principles, guidelines and methodologies in respect of wheeling and optimum scheduling and despatch of electricity as the Central Commission may specify in the Grid Code. Section 29(1) of the Act provides that the Regional Load Despatch Centre shall issue such directions and exercise such supervision and control as may be required for ensuring the stability of the grid operation and for achieving the maximum economy and efficiency in the operation of the power system in the region under its control. Section 33(3) of the Act provides that the State Load Despatch Centre shall comply with the directions of the Regional Load Despatch Centre ("RLDC"). Section 29(4) of the Act provides that the Regional Power Committee in the region may, from time to time, agree on matters concerning the stability and smooth operation of the integrated grid and the economy and efficiency of the power system within the region. Therefore, the Act envisages and assigns responsibilities to the

Regional Load Despatch Centres and State Load Despatch Centres as apex bodies at the regional level and state level, respectively, to ensure safe, secure, stable, and integrated operation of the power system in the respective region or the state, as the case may be, and to the Regional Power Committees to coordinate among the constituents in their respective regions to achieve agreement with regard to stability and smooth operation of the integrated grid.

2. Regulation 31 of the Grid Code provides for the time horizon for operational planning, demand estimation, generation estimation, and adequacy of resources for the purpose of operational planning in the following manner: -

(a) For operational planning, National Load Despatch Centre, Regional Load Despatch Centres, and State Load Despatch Centres have been assigned the responsibility to carry out operational planning within their respective control areas on Intra-day, Day Ahead, and Weekly time horizons.

(b) For demand estimation, the State Load Despatch Centres are mandated to carry out demand estimation as part of operational planning for both active power and reactive power incidents on the transmission systems based on the details collected from distribution licensees, grid-connected distributed generation resources, captive power plants and other bulk consumers embedded within the State and to estimate the peak and off-peak demand on a weekly and monthly basis for load - generation balance planning as well as for operational planning. Based on the demand estimate furnished by SLDCs and other entities directly connected to the ISTS, RLDCs shall prepare regional demand estimates based on which NLDC shall prepare national demand estimates.

(c) For generation estimation, RLDCs have been mandated to forecast generation from wind, solar, ESS, and renewable energy hybrid generating stations, which are regional entities, and SLDCs have been mandated to forecast generation from such resources which are intra-State entities for different time horizons, for the purpose of operational planning.

(d) SLDCs are required to estimate and ensure adequacy of resources, identify generation, demand response capacity, and generation flexibility requirements, and furnish time block-wise information for the following day in respect of all intra-State entities to the concerned RLDCs who shall validate the adequacy of resources with due regard to the aggregated demand forecast for the control area, renewable energy generation forecast for the control area, injection schedule of intra-State entity generating stations, requisition from regional entity generating stations, secondary and planned procurement through tertiary reserve requirements, and planned procurement through bilateral or collective transactions.

3. Regulation 33 provides that based on the operational planning analysis data, NLDC, RLDCs, and SLDCs shall carry out operational planning studies in real time, intra-day, day-ahead, and weekly basis, and RPCs shall carry out operational planning studies on monthly/yearly basis. This Regulation further provides that operational studies shall be carried out to assess whether the planned operations would result in deviations from any of the operational limits defined under the Grid Code and applicable standards issued by the Central Electricity Authority. Regulation 33 further enjoins upon Regional Power Committees to monitor significant deviations for early resolution. NLDCs, RLDCs, RPCs, and SLDCs are required to develop operating plans to address potential deviation from system operational limits identified as a result of the operational planning study and communicate the same to the users in advance for taking corrective measures. The detailed reasons and explanations given by the users shall be discussed in the monthly operation sub-committee of the respective regions, and quarterly reports shall be submitted by RPCs to the Commission and CEA.

4. An extract of Regulations 31 and 33 of the Grid Code is enclosed in this order for the convenience of reference.

5. The Commission sought details of the load-generation scenario for the months of September and October 2024 from NLDC, followed by meetings of the Commission with the officers of NLDC. NLDC has submitted forecast scenarios for the months of September 24 and October 2024. The NLDC has also conducted the meeting of the Forum of Load Despatchers to ensure the proper projection of demand by the State Load Despatch Centre. We have considered the peak demand forecast for the month of October 2024. A summary of these scenarios is as under:-

("' 0"")
Oct-24
230
232.2
59.4
172.8
187.9
182.20
5.7
12.60

 Table 1: Peak demand forecast and load generation balance during Oct-24

 (in GW)

It is observed from the above table that the projected load generation balance based on peak demand during October 2024 indicates the requirement for additional generation. The rise in demand during solar generation hours can be met from renewable generation provided the solar generation is as per the past trends. However, during non-solar hours (including evening and morning peaks), there is a requirement of additional requirement of Generation resources of about 12.60 GW with a reserve requirement of 3% to meet contingency.

6. The Grid Code enjoins the responsibility upon all concerned stakeholders to ensure stable and economic operation of power system and resolve the issues of significant deviations, if any. The Commission, taking cognizance of the previous year's record, intends to impress upon all the stakeholders that there is an imperative need for prudent planning of load generation balance and issue of alerts to all the gridconnected user entities of the concerned control areas to make them aware about the anticipated challenges in the operation of the power system and for undertaking the preventive measures as may be required to maintain load generation balance.

7. The Commission is of the view that there is a need to sensitize all the stakeholders, monitor their actions, and bring about behavioural changes through specific and proactive regulatory interventions The Commission believes that it is advisable to take preventive *ex-ante* measures instead of the ex-post reactive measures of finding instances of violation of the Grid Code, initiating penal proceedings for violation, and imposing penalty under the provisions of the Act. This proactive approach would also help to encourage collective efforts on the part of the National Load Despatch Centre, Regional Load Despatch Centres, State Load Despatch Centres, and the grid connected entities to make concerted efforts to ensure stable and economic operation of the grid.

8. The projected requirement of generation is significantly higher than the annual growth of the electricity demand and the addition of generation capacity. The projected requirement of thermal generation during October, 2024 needs proper operational planning and adequacy of resources in terms of Regulation 31(4) of the Grid Code. Any uncertain variation in the electricity demand arising on account of seasonal variations leading to a rapid increase in demand causes undesirable stress in the power system. The steep rise in electricity demand without adequate generation sources may put the power system operation at risk. It is the statutory responsibility of the RLDCs and SLDCs to carry out the operational planning for the increase in demand due to seasonal variations while discharging their functions under Sections 28

and 32 of the Act, respectively, read with the provisions of Regulations 31 and 33 of the Grid Code. 12. In light of the above, the Commission feels that there is a need to prepare the system operators and the stakeholders to meet the situation arising out of the abrupt increase in demand due to seasonal variations, especially during October 2024. Regulation 60 of the Grid Code empowers the Commission to issue practice directions through suo-moto proceedings with regard to implementation of the provisions of the said Regulations. Regulation 60 of the Grid Code is extracted as under:-

"60. Issue of Suo Motu Orders and Directions

The Commission may from time to time issue suo motu orders and practice directions with regard to implementation of these regulations and matters incidental or ancillary thereto, as the case may be."

9. In exercise of the powers vested under Regulation 60, read with all relevant provisions of the Grid Code, the Commission issues the following directions to NLDC, RLDCs, and SLDCs in connection with the implementation of Regulations 31 and 33 of the Grid Code to address the anticipated surge in demand of electricity during October 2024 on account of seasonal variations:

- a) All the State Load Despatch Centres and RLDCs shall furnish the details of operational planning undertaken by them in terms of Regulation 31(4) (a) of the Grid Code especially for October 2024. RLDC shall validate the adequacy of resources in terms of Regulation 31(4)(b) of the Grid Code.
- b) All State Load Despatch Centres and Regional Load Despatch Centres shall prepare the worst-case scenario due to possible surge in demand during the

period 1.10.2024 to 31.10.2024 in their respective control area and submit within seven days to the Commission with a copy to National Load Despatch Centre.

- c) The State Load Despatch Centres or Regional Load Despatch Centres, as the case may be, should assess their demand-generation scenario in the upcoming months, ensure the optimum generation, avoid undesirable planned outages, and advise the generating company to offer their availability. The State Load Despatch Centre or Regional Load Despatch Centre shall ensure the optimum scheduling during the shortage period and surplus power to get despatched during the deficit period.
- d) The Distribution Companies, in case of a shortage scenario, can procure the power from surplus or requisitioned capacity of other states so that optimum despatch can be ensured for safe and reliable power system operations. The State Load Despatch Centre shall monitor the generation-demand deficit of the respective distribution companies.
- e) The generating companies operating their plant with capacity less than its installed capacity due to technical issues, i.e., capacity under partial outage or forced outage, are advised to fix the issues to ensure the maximum generation capacity on-bar.
- f) The draw schedule of the respective control area needs to adhere to prevent the reduction of system frequency. The State Load Despatch Centre or Regional Load Despatch Centre, as the case may be, shall monitor the deviation of the key system parameters.

g) The State Load Despatch Centres or Regional Load Despatch Centres, as the case may be, shall issue the system alerts to their respective grid-connected entities for the possible deficit during the likely surge in demand.

10. The Regional Load Despatch Centres and State Load Despatch Centres shall submit the report on the implementation of the above measures, a load-generation scenario in their respective control areas, and any other measures taken to address the deficit of power supply during the period 1.10.2024 to 31.10.2024.

11. The objective of the present proceedings is to prepare the system operators and other stakeholders to meet the challenges and threats to the power system that may arise due to the abrupt increase in demand. The responses of the SLDCs, RLDCs, and NLDC with regard to the implementation of the measures detailed in para 9 of this order shall, in the first instance, be examined in detail by a Single-Member Bench comprising a Member of the Commission. Accordingly, in the exercise of powers under Section 97 of the Electricity Act, 2003, the Commission nominates Shri Ramesh Babu V., Member, to conduct the proceedings for this purpose. The Single Member Bench shall provide due opportunity to the parties to make their submissions. The Single Member Bench shall have the authority to direct the parties to submit such further information and to take such remedial measures as may be considered necessary. The Single Member Bench shall submit a report to the Commission with regard to the preparedness of the System Operators and other stakeholders to meet the challenges arising on account of the sudden surge in demand for power and his recommendations with regard to the remedial measures to be taken for the future. The

Commission, after consideration of the report of the Single Member Bench shall issue appropriate directions as may be considered appropriate.

12. NLDC, RLDCs, and SLDCs are directed to submit their responses to the measures contained in para 9 of this order by 16.10.2024.

Sd./-Sd./-(Shri Harish Dudani)(Shri Ramesh Babu V)MemberMember

Sd./-(Shri Jishnu Barua) Chairperson

Extract of Regulation 31 and 33 of the Grid Code

31. OPERATIONAL PLANNING

- (1) Time Horizon
 - (a) Operational planning shall be carried out in advance by NLDC, RLDCs and SLDCs within their respective control areas with Monthly and Yearly time horizons in co-ordination with CTU, RPCs or STUs, as applicable.
 - (b) Operational planning shall be carried out in advance by NLDC, RLDCs and SLDCs within their respective control areas on Intra-day, Day Ahead, Weekly time horizons.
 - (c) RLDCs in consultation with NLDC shall issue procedures and formats for data collection to carry out:
 - (i) Operational planning analysis,
 - (ii) Real-time monitoring,
 - (iii) Real-time assessments.
 - (d) SLDC may also issue procedures and formats for data collection for the above purposes.
- (2) Demand Estimation
 - (a) Each SLDC shall carry out demand estimation as part of operational planning after duly factoring in the demand estimation done by STU as part of resource adequacy planning referred to in Chapter 2 of these regulations. Demand estimation by SLDC shall be for both active power and reactive power incidents on the transmission system based on the details collected from distribution licensees, grid-connected distributed generation resources, captive power plants and other bulk consumers embedded within the State.

- (b) Each SLDC shall develop methodology for daily, weekly, monthly, yearly demand estimation in MW and MWh for operational analysis as well as resource adequacy purposes. Each SLDC, while estimating demand may utilize state of the art tools, weather data, historical data and any other data. For this purpose, all distribution licensees shall maintain a historical database of demand.
- (c) The demand estimation by each SLDC shall be done on day ahead basis with time block wise granularity for the daily operation and scheduling. In case SLDC observes a major change in demand in real time for the day, it shall immediately submit the revised demand estimate to the concerned RLDC for demand estimate correction.
- (d) Each SLDC shall submit node-wise morning peak, evening peak, day shoulder and night off-peak estimated demand in MW and MVA on a monthly and quarterly basis for the nodes 110 kV and above for the preparation of scenarios for computation of TTC and ATC by the concerned RLDC and NLDC.
- (e) SLDC shall also estimate peak and off-peak demand (active as well as reactive power) on a weekly and monthly basis for load - generation balance planning as well as for operational planning analysis, which shall be a part of the operational planning data. The demand estimates mentioned above shall have granularity of a time block. The estimate shall cover the load incident on the grid as well as the net load incident taking into account embedded generation in the form of roof-top solar and other distributed generation.
- (f) The entities such as bulk consumers or distribution licensees that are directly connected to ISTS shall estimate and furnish such a demand estimate to the concerned RLDC.
- (g) Based on the demand estimate furnished by the SLDCs and other entities directly connected to ISTS, each RLDC shall prepare the regional demand estimate and submit it to the NLDC. NLDC, based on regional demand estimates furnished by RLDCs, shall prepare national demand estimate.

- (h) Timeline for submission of demand estimate data by SLDCs or other entities directly connected to ISTS, as applicable, to the respective RLDC and RPC shall be as follows:
- (i) SLDCs, RLDCs and NLDC shall compute forecasting error for intra-day, dayahead, weekly, monthly and yearly forecasts and analyse the same in order to reduce forecasting error in the future. The computed forecasting errors shall be made available by SLDCs, RLDCs and NLDC on their respective websites.
- (3) Generation Estimation
 - (a) The modalities of generation estimation by entities shall be as per the Procedure referred to in sub-clause (c) of clause (1) of Regulation 31 of these regulations.
 - (b) RLDC shall forecast generation from wind, solar, ESS and Renewable Energy hybrid generating stations that are regional entities and SLDC shall forecast generation from such sources that are intra-state entities, for different time horizons as referred to in clause (1) of Regulation 31 of these regulations for the purpose of operational planning.
- (4) Adequacy of Resources
 - (a) SLDCs shall estimate and ensure the adequacy of resources, identify generation reserves, demand response capacity and generation flexibility requirements with due regard to the resource adequacy framework as specified under Chapter 2 of these regulations.
 - (b) SLDCs shall furnish time block-wise information for the following day in respect of all intra-state entities to the concerned RLDC who shall validate the adequacy of resources with due regard to the following:
 - (i) Demand forecast aggregated for the control area;
 - (ii) Renewable energy generation forecast for the control area;

- (iii) Injection schedule for intra-State entity generating station;
- (iv) Requisition from regional entity generating stations;
- (v) Secondary and planned procurement through Tertiary reserve requirement;
- (vi) Planned procurement of power through other bilateral or collective transactions, if any.

33. OPERATIONAL PLANNING STUDY

- Based on the operational planning analysis data, operational planning study shall be carried out by various agencies for time horizons as under:
- (2) SLDCs, RLDCs and NLDC shall utilize network estimation tool integrated in their EMS and SCADA systems for the real time operational planning study. All users shall make available at all times real time error free operational data for the successful execution of network analysis using EMS/SCADA. Failure to make available such data shall be immediately reported to the concerned SLDC, the concerned RLDC and NLDC along with a firm timeline for restoration. The performance of online network estimation tools at SLDC and RLDC shall be reviewed in the monthly operational meeting of RPC. Any telemetry related issues impacting the online network estimation tool shall be monitored by RPC for their early resolution.
- (3) SLDCs shall perform day-ahead, weekly, monthly and yearly operational studies for the concerned State for:
 - (a) assessment and declaration of total transfer capability (TTC) and available transfer capability (ATC) for the import or export of electricity by the State. TTC and ATC shall be revised from time to time based on the commissioning of new elements and other grid conditions and shall be published on SLDC website with all the assumptions and limiting constraints;

- (b) planned outage assessment;
- (c) special scenario assessment;
- (d) system protection scheme assessment;
- (e) natural disaster assessment; and
- (f) any other study relevant in operational scenario.
- (4) RLDCs and NLDC shall perform day-ahead, weekly, monthly and yearly operational studies for:

(a) assessment of TTC and ATC at inter-regional, intra-regional, and inter-state levels;

- (b) planned outage assessment;
- (c) special scenario assessment;
- (d) system protection scheme assessment;
- (e) natural disaster assessment; and
- (f) any other study relevant to operational scenarios
- (5) RLDC shall assess intra-regional and inter-state level TTC and ATC and submit them to NLDC. NLDC shall declare TTC and ATC for import or export of electricity between regions including simultaneous import or export capability for a region, and crossborder interconnections 11 (Eleven) months in advance for each month on a rolling basis. TTC and ATC shall be revised from time to time based on the commissioning of new elements and other grid conditions and shall be published on the websites of the NLDC and respective RLDCs with all the assumptions and limiting constraints
- (6) Operational planning study shall be done to assess whether the planned operations shall result in deviations from any of the system operational limits defined under these regulations and applicable CEA Standards. The deviations, if

any, shall be reviewed in the monthly operational meeting of RPC and significant deviations shall be monitored by RPC for early resolution.

- (7) NLDC, RLDCs, RPCs and SLDCs shall maintain records of the completed operational planning study, including date specific power flow study results, the operational plan and minutes of meetings on operational study.
- (8) NLDC, RLDCs, RPCs and SLDCs shall have operating plans to address potential deviations from system operational limit identified as a result of the operational planning study. These operating plans shall be communicated to users in advance so that they can take corrective measures. In case any user is unable to adhere to such an operating plan, it shall inform the respective SLDC, RLDC and NLDC in advance with detailed reasons and explanations for the non-adherence. These detailed reasons and explanations shall be discussed in the monthly operation sub-committee of the respective region and a quarterly report shall be submitted by the respective RPC to the Commission and CEA.
- (9) Each SLDC shall undertake a study on the impact of new elements to be commissioned in the intra-state system in the next six (6) months on the TTC and ATC for the State and share the results of the studies with RLDC.
- (10) Each RLDC shall undertake a study on the impact of new elements to be commissioned in the next six (6) months in (a) the ISTS of the region and (b) the intrastate system on the inter-state system and share the results of the studies with NLDC
- (11) NLDC shall undertake study on the impact of new elements to be commissioned in the next six (6) months in (a) inter-regional system, (b) cross-border link and (c) intraregional system on the inter-regional system.
- (12) NLDC, RLDCs and SLDCs shall compare the results of the studies of the impact of new elements on the system and transfer capability addition with those of the interconnection and planning studies by CTU and STUs, and any significant

variations observed shall be communicated to CEA, RPCs, CTU and STUs for immediate and long-term mitigation measures.

(13) Defense mechanisms like system protection scheme, load-rejection scheme, generation run-back, islanding scheme or any other scheme for system security shall be proposed by the concerned user or SLDC or RLDC or NLDC and shall be deployed as finalized by the respective RPC.

Annexure-B.II

			Circuit	Tower	Line		Agen	cy at			Replaced with	
S.No.	Voltage Level	Name of Line	ID	Configura	Length	O&M by	End-I	End-II	Type of conductor	Remarks	Polymer Insulator	Remarks
1. HV	DC lines											
	NES											
1313 L	INES											
A. POWI	RGRID			D : 1	4700	2014/52 0212						
1	± 800kV	Agra-Bishwanath Chariali Pole-I	1	Bi-pole	1728	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	HVDC capcacity 6000	Partial (11%)	
2	± 800kV	Agra-Bishwanath Chariali Pole-II	2	Bi-pole	1728	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	MW, only two physical	Partial (11%)	
3	± 800kV	Agra-Alipurduar Pole-I	1	Bi-pole	1296*	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	lines	Partial (11%)	
4	± 800kV	Agra-Alipurduar Pole-II	2	Bi-pole	1296*	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing		Partial (11%)	
5	± 800kV	Kurukshetra-Champa Pole-I	1	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	HVDC capcacity 6000	Partial (11%)	
6	± 800kV	Kurukshetra-Champa Pole-II	2	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	MW, only two physical	Partial (11%)	
7	± 800kV	Kurukshetra-Champa Pole-III	3	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	lines	Partial (11%)	
8	± 800kV	Kurukshetra-Champa Pole-IV	4	Bi-pole	1305	POWERGRID	POWERGRID	POWERGRID	Hexagon Lapwing	111/12.0	Partial (11%)	
9	± 500kV	Balia-Bhiwadi Pole-I	1	Bi-pole	790	POWERGRID	POWERGRID	POWERGRID	ACSR Quad Bersimis	HVDC capacity 2500	Partial (15%)	
10	± 500kV	Balia-Bhiwadi Pole-II	2	Bi-pole	790	POWERGRID	POWERGRID	POWERGRID		MW	Partial (15%)	
11	± 500kV	Rihand-Dadri Pole-I	1	Bi-pole	815	POWERGRID	POWERGRID	POWERGRID	ACSR Quad Bersimis	HVDC capacity 1500	Partial (62%)	
12	± 500kV	Rihand-Dadri Pole-II	2	Bi-pole	815	POWERGRID	POWERGRID	POWERGRID		MW	Partial (43%)	
B. Adani	Power Ltd (Adam	i Transmission India Ltd.)		D : 1							D	
1	± 500kV	Adani Mundra - Mahindergarh Pole-I	1	Bi-pole	990	ATIL	APL Mundra	ATIL	ACSR Quad Bersimis	HVDC capacity 2500	Partial (43%)	
2	± 500kV	Adani Mundra - Mahindergarh Pole-II	2	Bi-pole	990	ATIL	APL Mundra	AIIL		MVV	Partial (43%)	
2.76	5kV Transmi	ission Line										
ISTS L	NES											
A. POW	ERGRID											
1	765kV	Agra-Aligarh	1	D/C	123	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	LILO of Agra-Gr. Noida	Polymer Insulator	
2	765kV	Aligarh-Gr.Noida	1	D/C	51	POWERGRID	POWERGRID	WUPPTCL	Quad Bersimis	at Aligarh (LILO portion	Polymer Insulator	
3	765kV	Agra-Fatehpur	1	S/C	335	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
4	765kV	Agra-Fatehpur	2	S/C	334	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
5	765kV	Agra-Jhatikara	1	S/C	252	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Polymer Insulator	
6	765kV	Ajmer-Chittorgarh	1	D/C	211	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
7	765kV	Ajmer-Chittorgarh	2	D/C	211	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
										LILO of 765kV D/C		
8	765kV	Ajmer-Bhadla II	1	D/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-1 at	Not Available	
										Bhadla II(PG)		
										LILO of 765kV D/C		
9	765kV	Ajmer-Bhadla II	2	D/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-2 at	Not Available	
										Bhadla II(PG)		
10	765kV	Balia - Lucknow765 (N)	1	S/C	319	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	, <i>, ,</i>	Conventional	
11	765kV	Bikaner - Bhadla	1	D/C	167	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
12	765kV	Bikaner - Bhadla	2	D/C	167	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
13	765kV	Bikaner- Moga	1	D/C	367	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
14	765kV	Bikaner- Moga	2	D/C	367	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
										LILO of 765kV D/C		
15	765kV	Bikaner-Bhadla II	1	D/C	197	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-1 at	Not Available	
										Bhadla II(PG)		
										LILO of 765kV D/C		
16	765kV	Bikaner-Bhadla II	2	D/C	197	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra	Ajmer-Bikaner-2 at	Not Available	
										Bhadla II(PG)		
17	765kV	Kanpur(GIS)-Aligarh	1	D/C	322	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	LILO of Kanpur-	Polymer Insulator	
18	765kV	Aligarh-Jhatikara	1	D/C	158	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	Jhatikara at Aligarh	Polymer Insulator	
19	765kV	Jhatikara-Bhiwani (PG)	1	S/C	85	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Polymer Insulator	
20	765kV	Koteshwar(PG)-Meerut	1	S/C	176	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	Earlier charged at	Not Available	
21	765kV	Koteshwar(PG)-Meerut	2	S/C	176	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	400kV	Not Available	
22	765kV	Lucknow-Bareilly	1	S/C	252	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
23	765kV	Meerut-Bhiwani(PG)	1	S/C	174	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (99%)	
-		• • •								•		

24	765kV	Meerut-Gr.Noida	1	S/C	119	POWERGRID	POWERGRID	WUPPTCL	Quad Bersimis	Agra-Meerut LILOed at G. Noida by UPPTCL	Polymer Insulator	
25	765kV	Moga- Bhiwani (PG)	1	S/C	273	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (96%)	
26	765kV	Moga-Meerut	1	S/C	338	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Polymer Insulator	
27	765kV	Orai-Aligarh	1	D/C	331	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
28	765kV	Orai-Aligarh	2	D/C	331	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
29	765kV	Phagi-Bhiwani(PG)	1	S/C	272	POWERGRID	RRVPNL	POWERGRID	Quad Bersimis		Partial (18%)	
30	765kV	Phagi-Bhiwani(PG)	2	S/C	277	POWERGRID	RRVPNL	POWERGRID	Quad Bersimis		Partial (16%)	
31	765kV	Varanasi-Balia	1	S/C	166	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Conventional	
32	765kV	Varanasi-Fatehpur	1	S/C	223	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	LILO of Gaya (ER)- Fatehpur at Varanasi	Conventional	
33	765kV	Varanasi-Kanpur(GIS)	1	S/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Polymer Insulator	
34	765kV	Varanasi-Kanpur(GIS)	2	S/C	326	POWERGRID	POWERGRID	POWERGRID	Hexa Zebra		Polymer Insulator	
B. PKTSI	L	1				1	1					_
1	765kV	Khetri-Jhatikara	1	D/C	146	PKTSL	PKTSL	POWERGRID	Hexa Zebra		Not Available	
2	765kV	Khetri-Jhatikara	2	D/C	146	PKTSL	PKTSL	POWERGRID	Hexa Zebra		Not Available	
C. PFTL	1			1	1	1	1		1	1		•
1	765kV	Fatehgarh II-Bhadla II	1	D/C	186	PFTL	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
2	765kV	Fatehgarh II-Bhadla II	2	D/C	186	PFTL	POWERGRID	POWERGRID	Hexa Zebra		Not Available	
D. FBTL					I							•
1	765kV	Fatehgarh II-Bhadla	1	D/C	175	FBTL	POWERGRID	POWERGRID	Hexa Zebra	Loop in of 400kV	Polymer Insulator	
2	765kV	Fatehgarh II-Bhadla	2	D/C	175	FBTL	POWERGRID	POWERGRID	Hexa Zebra	Fatehgarh (FBTL)-	Polymer Insulator	
E. BKTL		1										
1	765kV	Bikaner-Khetri	1	D/C	241	BKTL	POWERGRID	PKTSL	Hexa Zebra		Polymer Insulator	
2	765kV	Bikaner-Khetri	2	D/C	241	BKTL	POWERGRID	PKTSL	Hexa Zebra		Polymer Insulator	
F. PAPTI	L				1					1		
1	765kV	Ajmer-Phagi	1	D/C	134	PAPTL	POWERGRID	RRVPNL	Hexa Zebra		Not Available	
2	765kV	Ajmer-Phagi	2	D/C	134	PAPTL	POWERGRID	RRVPNL	Hexa Zebra		Not Available	
G. PASTL												
1	765kV	Aligarh(PG)-SIKAR_2	1	D/C	265	PASTL	PSTL	POWERGRID	Hexa Zebra	Anti theft charged	Not Available	
2	765kV	Aligarh(PG)-SIKAR_2	2	D/C	265	PASTL	PSTL	POWERGRID	Hexa Zebra	from Aligarh(PG) Upto	Not Available	
STATE												
1	765kV	Agra Fatebabad-Ghatampur	1	s/c	229	UPPTCI	UPPTCI	UPPTCI	Quad Bersimis		Not Available	
2	765kV	Agra Fatehabad-Gr. Noida	1	s/c	159	UPPTCL	UPPTCL	UPPTCL	ACSR Quad Bersimis		Not Available	
3	765kV	Agra(Fatehbad)-Lalitpur	1	s/c	337				Quad Bersimis		Not Available	
4	765kV	Agra(Fatehbad)-Lalitpur	2	5/C	335	UPPTCL	UPPTCL	LPGCL	Quad Bersimis		Not Available	
5	765kV	AnparaC-AnparaD	1	5/C	3	UPPTCL	LANCO	UPRVUNL	Quad Bersimis		Not Available	
6	765kV	AnparaC-Unnao	1	s/c	409	UPPTCL	LANCO	UPPTCL	Quad Bersimis		Conventional	AnparaB-Unnao shifted to AnparaC and charged at 765kV
7	765kV	AnparaD-Obra_C	1	D/C	53	UPPTCL	UPRVUNL	UPPTCL	Quad Bersimis	After LILO of 765 KV	Not Available	
8	765kV	Obra_C-Unnao	1	D/C	390	UPPTCL	UPRVUNL	UPPTCL	Quad Bersimis	ANPARA D-UNNAO LINE	Not Available	
9	765kV	Bara-Mainpuri	1	S/C	377	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis		Not Available	
10	765kV	Gr. Noida-Meerut_PMSTL	1	S/C	100	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	After LILO of 765 KV	Not Available	
11	765kV	Meerut_PMSTL-Hapur	1	S/C	37	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	GREATER NOIDA	Not Available	
12	765kV	Gr. Noida-Jawaharpur	1	D/C	162	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	After LILO of 765 KV	Not Available	
13	765kV	Jawaharpur-Mainpuri	1	D/C	40	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	MAINPURI(SEUPPTCL)-	Not Available	
14	765kV	Hapur(UP)-Rampur_PRSTL (UP)	1	s/c	230	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis	LILO of 765kV Hapur- Ghatampur at Rampur. LILO portion is on D/C tower 2.5km 5towers	Not Available	

												-
15	765kV	Mainpuri(UP)-Hapur(UP)	1	S/C	217	UPPTCL	UPPTCL	UPPTCL	Quad Bersimis		Not Available	
B. RRVI	PNL					1	1	1	1	1		•
1	765kV	Anta-Phagi	1	S/C	214	RRVPNL	RRVPNL	RRVPNL	Quad Bersimis		Not Available	
2	765kV	Anta-Phagi	2	S/C	212	RRVPNL	RRVPNL	RRVPNL	Quad Bersimis		Not Available	
3.76	5kV Transmi	ssion Line charged at 400kV										
ISTS L	INES											
A. POW	/ERGRID											
1		Kishenpur-Moga	1	S/C	275	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (1%)	
2		Kishenpur-Moga	2	S/C	287	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis		Partial (1%)	
3	765kV charged at	Tehri-Koteshwar(PG)	1	5/C	15	POWERGRID	THDC	POWERGRID	Quad Bersimis		Conventional	
4	400kV	Tehri-Koteshwar(PG)	2	S/C	17	POWERGRID	THDC	POWERGRID	Quad Bersimis		Conventional	
5		Rihand-Vindhyachal Pool	1	S/C	31	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Not Available	
6		Rihand-Vindhyachal Pool	2	S/C	31	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Not Available	
4 40		ansmission Line										-
1313 L	IINES											
A. POW	/ERGRID			- /-								
1	400kV	Abdullapur- Bawana	1	D/C	167	POWERGRID	POWERGRID	DTL	Triple Snowbird		Partial (99%)	
										LILO of Abdullapur-		LILO of Abdullapur-
2	400kV	Abdullapur- Deepalpur	1	D/C	141	POWERGRID	POWERGRID	KT Jhajjar	Triple Snowbird	Bawana one ckt at	Partial (99%)	Bawana one ckt at
										Deepalpur by Jhajjar KT		Deepalpur
										,"		
з	400kV	Abdullapur-Kurukshetra	1	D/C	52	POWERGRID	POWERGRID	POWERGRID	Triale Casultind Truin	LILO of Abdullapur-Sonipat line	Polymer Insulator	LILO of Abdullapur-
,	40000		-	5/0	52	TOWERGRAD	TOWERGRAD	TOWERGRAD		at Kurukshetra	r otymer modultor	Sonepat ckts at
4	400kV	Abdullapur-Kurukshetra	2	D/C	52	POWERGRID	POWERGRID	POWERGRID	HILS IOF LILU	LILO of Abdullapur-Sonipat line	Polymer Insulator	Kurukshetra
5	400kV	Agra-Agra(Fatehbad)	1	S/C	45	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO of Agra(PG)-Agra(UP) ckt-	Polymer Insulator	
6	400kV	Agra(UP)-Agra(Fatehbad)	1	s/c	56	POWERGRID	UPPTCL	UPPTCL	Twin Moose	2 at Fatehabad (765kV Agra	Polymer Insulator	
7	400kV	Agra-Agra(UP)	1	D/C	30	POWERGRID	POWERGRID	UPPTCL	Twin Moose	UF)	Polymer Insulator	
8	400kV	Agra-Ballabgarh	1	S/C	181	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
~	400114	A Di		6/6	244	DOMEDODID	DOWEDCDID	DOWEDCDID	Turke Manage			Planned for insulator
9	400KV	Agra-Bassi		S/C	211	POWERGRID	POWERGRID	POWERGRID	I win Woose		Conventional	replacement in 321nd
												towers under NR3
10	400kV	Agra-Bhiwadi	1	D/C	209	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
11	400kV	Agra-Bhiwadi	2	D/C	209	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
12	400107	Agra Jainur South	1	D/C	254			DOWERCBID	Twin Mooro	LILO of Agra-Bassi D/C	Portial (406)	
12	400KV	Agra-Jaipur South	1	D/C	254	POWERGRID	POWERGRID	POWERGRID	I win woose	at Jaipur South	Partial (4%)	LILO of Agra-Bassi D/0
12	40060	Agra Jaipur South	2	D/C	254				Twin Mooso	LILO of Agra-Bassi D/C	Partial (4%)	at Jaipur South
15	40000		2	D/C	234	TOWERGRID	TOWERGRID	TOWERGRID	T WIT WIO 03C	at Jaipur South	1 4144 (470)	
14	400kV	Agra-Sikar	1	D/C	386	POWERGRID	POWERGRID	POWERGRID	Twin Moose	-	Partial (3%)	
15	400kV	Agra-Sikar	2	D/C	386	POWERGRID	POWERGRID	POWERGRID	Twin Moose	-	Partial (3%)	
16	400kV	Ajmer-Ajmer(PG)	1	D/C	66	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
17	400kV	Ajmer-Ajmer(PG)	2	D/C	66	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
18	400kV	Allahabad-Fatehpur	3	S/C	154	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Allanabad-Kanpur one ckt at Fatehpur	Polymer Insulator	
19	400kV	Allahabad-Fatehpur	1	D/C	140	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Lilo of Allahabad-Mainpuri (PG)	Conventional	
		· · · · · · · · · · · · · · · · · · ·	-	-,-						D/C at Fatehpur Lilo of Allahabad-Mainpuri (PG)		
20	400kV	Allahabad-Fatehpur	2	D/C	140	POWERGRID	POWERGRID	POWERGRID	Twin Moose	D/C at Fatehpur	Conventional	
21	400kV	Allahabad-Varanasi	1	D/C	99	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Allahabad-Sarnath shifted	Conventional	
~ ~ ~	40000					1 OWENGIND	1 O WENGIND		I WIII WIOO3e	from Sarnath to varanasi	Somentionat	
22	400kV	Allahabad-Kanpur	1	S/C	225	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
23	400kV	Allahabad-Kanpur(New 765)	1	D/C	240	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
24	400kV	Allahabad-Kanpur(New 765)	2	D/C	240	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
25	400kV	Allahabad-Meja(NTPC)	1	D/C	28	POWERGRID	POWERGRID	MUNPL	Twin Moose		Polymer Insulator	hetween NTPC and
26	400kV	Allahabad-Meja(NTPC)	2	D/C	28	POWERGRID	POWERGRID	MUNPL	Twin Moose		Polymer Insulator	

27	400kV	Amritsar-Jalandhar	1	S/C	60	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
28	400kV	Amritsar-Jalandhar	2	D/C	71	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of 400kV Amritsar- Hamirpur at Jalandhar
29	400kV	Amritsar-ParbatiPooling (Banala)	1	D/C	251	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (49%)	
30	400kV	Auraiya-Agra	1	D/C	166	POWERGRID	NTPC	POWERGRID	Twin Moose		Partial (86%)	
31	400kV	Auraiya-Agra	2	D/C	166	POWERGRID	NTPC	POWERGRID	Twin Moose		Partial (90%)	
32	400kV	Baglihar II-Kishenpur	1	s/c	130	POWERGRID	JKSPDCL	POWERGRID	Twin Moose	LILO of 400kV Kishenpur-New Wanpoh ckt-2 at Baglihar. LILO portion is of JK PDD	Conventional	
33	400kV	Baghlihar II-New Wanpoh	1	S/C	130	POWERGRID	JKSPDCL	POWERGRID	Twin Moose		Not Available	
34	400kV	Bagpat-Kaithal	1	D/C	154	POWERGRID	POWERGRID	POWERGRID	Quad Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
35	400kV	Bagpat-Kaithal	2	D/C	154	POWERGRID	POWERGRID	POWERGRID	Quad Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
36	400kV	Bagpat-Saharanpur	1	D/C	121	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Partial (41%)	
37	400kV	Bagpat-Dehradun	1	D/C	165	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Partial (40%)	
38	400kV	Bahadurgarh-Kabulpur	1	S/C	42	POWERGRID	POWERGRID	HVPNL	Twin Moose		Polymer Insulator	LILO of Bahadurgarh- Bhiwani at Kabulpur
39	400kV	Bahadurgarh-Sonepat	1	D/C	53	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
40	400kV	Bahadurgarh-Sonepat	2	D/C	53	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
41	400kV	Balia-Mau	1	D/C	9	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
42	400kV	Balia-Sohawal	1	D/C	229	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Balia- LUCKNOW D/C at Sohawal	Conventional	LILO of Balia-Lucknow (316 KM) D/C at Sohawal
43	400kV	Balia-Sohawal	2	D/C	229	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Balia- LUCKNOW D/C at Sohawal	Conventional	LILO of Balia-Lucknow (316 KM) D/C at Sohawal
44	400kV	Ballabgarh-Tughlakabad	1	M/C	40	DTL	POWERGRID	POWERGRID	HTLS INVAR (LILO	Tower is quad circuit tower	Polymer	
45	400kV	Ballabgarh-Tughlakabad	2	M/C	40	DTL	POWERGRID	POWERGRID	(before LILO)	Tower is quad circuit tower	Polymer	
46	400kV	Ballabhgarh-Gurgaon	1	S/C	43	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
47	400kV	Ballabhgarh-Maharanibagh	1	D/C	61	POWERGRID	POWERGRID	POWERGRID	Quad Bersimis	Bypassed at Maharanibagh to form Dadri-Ballabgarh	Polymer Insulator	
48	400kV	Ballabhgarh-Nawada	1	D/C	13	POWERGRID	POWERGRID	HVPNL	Quad Bersimis		Polymer Insulator	Ballabhgarh-Gnoida LILOed at Nawada (Faridabad,Haryana)
49	400kV	Bareilly PG-Moradabad	1	D/C	93	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Partial (3%)	
50	400kV	Bareilly PG-Rampur_PRSTL	1	s/c	40	POWERGRID	POWERGRID	UPPTCL	Twin Moose	After LILO of 400 KV BAREILLY(PG)- MORADABAD(UPPTCL) CIRCUIT-II at RAMPUR(PRSTL)	Not Available	
51	400kV	Rampur_PRSTL-Moradabad	1	s/c	57	POWERGRID	UPPTCL	UPPTCL	Twin Moose	After LILO of 400 KV BAREILLY(PG)- MORADABAD(UPPTCL) CIRCUIT-II at RAMPUR(PRSTL)	Not Available	
52	400kV	Bareilly PG-Bareilly (765kV)	1	D/C	2	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Conventional	
53	400kV	Bareilly PG-Bareilly (765kV)	2	D/C	2	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Conventional	

54	400kV	Bareilly PG(765kV)-Kashipur	1	D/C	101	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (90%)	
55	400kV	Bareilly PG(765kV)-Kashipur	2	D/C	101	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (90%)	
56	400kV	Bassi-Bhiwadi	2	S/C	220	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
57	400kV	Bassi-Heerapura	1	D/C	48	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Polymer Insulator	
58	400kV	Bassi-Heerapura	2	D/C	49	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Polymer Insulator	
59	400kV	Bassi-Kotputli	1	S/C	106	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
60	400kV	Bassi-Phagi	1	D/C	48	POWERGRID	POWERGRID	RRVPNL	Quad Moose		Partial (26%)	
61	400kV	Bassi-Phagi	2	D/C	48	POWERGRID	POWERGRID	RRVPNL	Quad Moose		Partial (26%)	
62	400kV	Bassi-Sikar	1	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (16%)	
63	400kV	Bassi-Sikar	2	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (17%)	
64	400kV	Bawana(CCGT)-Bahadurgarh	1	D/C	49	POWERGRID	DTL/Pragati CCGT	POWERGRID	Twin Moose		Polymer Insulator	
65	400kV	Bhadla-Bhadla(PG)	1	D/C	27	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
66	400kV	Bhadla-Bhadla(PG)	2	D/C	27	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
67	400kV	Bhadla-Bhadla II	1	D/C	52	POWERGRID	POWERGRID	POWERGRID	Twin HTLS+Hexa Zebra	48.309KM Twin HTLS conductor of	Not Available	
68	400kV	Bhadla-Bhadla II	2	D/C	52	POWERGRID	POWERGRID	POWERGRID	Twin HTLS+Hexa Zebra	POWERGRID and 3.73 KM HEXA Zebra of FBTL	Not Available	
69	400kV	Bhinmal-Kankroli	1	D/C	202	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Bhinmal to form 400kV Kankroli Zerda ckt-2	Polymer Insulator	
70	400kV	Bhiwadi-Gurgaon	1	S/C	83	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
71	400kV	Bhiwadi-Hissar	1	S/C	212	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
72	400kV	Bhiwadi-Hissar	2	D/C	144	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of Bhiwadi-Moga both ckts at Hisar
73	400kV	Bhiwadi-Hissar	3	D/C	144	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
74	400kV	Bhiwadi-NeemranaPG	1	D/C	48	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
75	400kV	Bhiwadi-NeemranaPG	2	D/C	48	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
76	400kV	Bhiwani BBMB - Hissar	1	s/c	35	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Bhiwani BBMB- Fatehabad	Polymer Insulator	
77	400kV	Bhiwani (PG) - Hissar	1	s/c	64	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Moga- Bhiwani(PG)	Polymer Insulator	LILO of Bawana-Hisar (132KM) at Bhiwani PG
78	400kV	Bhiwani (PG) - Hissar	2	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bhiwani/PG) to form	Polymer Insulator	
79	400kV	Bhiwani (PG) - Hissar	3	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Mahindergarh(ATIL)	Polymer Insulator	
80	400kV	Bhiwani PG - Jind	1	D/C	82	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
81	400kV	Bhiwani PG - Jind	2	D/C	82	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
82	400kV	Bhiwani PG- BawanaCCGT	1	D/C	97	POWERGRID	POWERGRID	DTL/ CCGT	Twin Moose		Polymer Insulator	LILO of Bawana-Hisar (132KM) at Bhiwani PG
83	400kV	Bhiwani PG- Bhiwani BBMB	1	s/c	34	POWERGRID	POWERGRID	BBMB	Twin Moose		Polymer Insulator	LILO of Bhiwani (BBMB)- Bahadurgarh (84km) at Bhiwani (PG)
84	400kV	Bhiwani PG-Kabulpur	1	S/C	48	POWERGRID	POWERGRID	HVPNL	Twin Moose		Polymer Insulator	LILO of Bahadurgarh- Bhiwani at Kabulpur
85	400kV	Bikaner_2 (PBTSL)-Bikaner(PG)	1	D/C	43	POWERGRID	PBTSL	POWERGRID	Quad Moose		Not Available	
86	400kV	Bikaner_2 (PBTSL)-Bikaner(PG)	2	D/C	43	POWERGRID	PBTSL	POWERGRID	Quad Moose		Not Available	
87	400kV	Chamba pool - Jalandhar	1	D/C	162	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (48%)	
88	400kV	Chamba pool - Jalandhar	2	D/C	162	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (48%)	
89	400kV	Chamera-II - Chamba Pool	1	S/C	0.38	POWERGRID	NHPC	POWERGRID	Twin Moose		Conventional	Two tower is S/C and one tower is D/C
90	400kV	Chamera-II-Chamera-I	1	S/C	36	POWERGRID	NHPC	NHPC	Twin Moose		Conventional	
91	400kV	Chamera-II-Kishenpur	1	S/C	135	POWERGRID	NHPC	POWERGRID	Twin Moose		Conventional	

92	400kV	Chamera-I-Jalandhar	1	D/C	152	POWERGRID	NHPC	POWERGRID	Twin ACAR		Partial (43%)	
93	400kV	Chamera-I-Jalandhar	2	D/C	152	POWERGRID	NHPC	POWERGRID	Twin ACAR		Partial (43%)	
94	400kV	Chittorgarh-Chittorgarh(PG)	1	D/C	49	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
95	400kV	Chittorgarh-Chittorgarh(PG)	2	D/C	49	POWERGRID	RRVPNL	POWERGRID	Quad Moose		Not Available	
96	400kV	Chittorgarh-Kankroli	1	D/C	71	POWERGRID	RRVPNL	POWERGRID	Twin Moose		Polymer Insulator	LILO of 400 kV Rapp C- Kankroli at Chhitorgarh
97	400kV	Dadri NCTPP-G. Noida	1	D/C	13	POWERGRID	NTPC	UPPCL	Quad Bersimis		Polymer Insulator	
98	400kV	Dadri NCTPP-Maharanibagh	1	D/C	54	POWERGRID	NTPC	POWERGRID	Quad Bersimis	Bypassed at Maharanibagh to form Dadri-Ballabgarh	Polymer Insulator	
99	400kV	Dadri NCTPP-Kaithal	1	S/C	213	POWERGRID	NTPC	POWERGRID	Twin Moose	LILO of Dadri- Malerkotla at Kaithal	Polymer Insulator	
100	400kV	Dadri NCTPP-Mandola	1	D/C	46	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Polymer Insulator	
101	400kV	Dadri NCTPP-Mandola	2	D/C	46	POWERGRID	NTPC	POWERGRID	Quad Bersimis		Polymer Insulator	
102	400kV	Dadri NCTPP-Muradnagar New	1	s/c	33	POWERGRID	NTPC	UPPTCL	Twin Moose		Polymer Insulator	Line shifted from Muradnagar to Muradnagar New (UPPTCL)
103	400kV	Dadri NCTPP-Panipat	1	S/C	112	POWERGRID	NTPC	BBMB	Twin Moose		Polymer Insulator	
104	400kV	Dadri NCTPP-Panipat	2	S/C	117	POWERGRID	NTPC	BBMB	Twin Moose		Polymer Insulator	
105	400kV	Deepalpur-Bawana	1	D/C	26	POWERGRID	KT-Jhajjar	DTL	Triple Snowbird	LILO of 400kV Bawana- Abdullapur one circuit at Deepalpur by Jhajjar KT	Polymer Insulator	
106	400kV	Dehradun-Abdullapur	1	D/C	89	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
107	400kV	Dehradun-Abdullapur	2	D/C	89	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
108	400kV	Dulhasti-Kishenpur	1	S/C	120	POWERGRID	NHPC	POWERGRID	Quad Moose		Conventional	
109	400kV	Dulhasti-Kishenpur	2	S/C	120	POWERGRID	NHPC	POWERGRID	Quad Moose		Conventional	
110	400kV	Dwarka-Jhatikara	1	S/C	18	POWERGRID	POWERGRID	POWERGRID	Twin HTLS	Aiter LILO of 400KV	Not Available	
111	400kV	Dwarka-Bamnauli	1	S/C	10	POWERGRID	POWERGRID	DTL	Twin HTLS	Jnatikara-Bamnou-Lat	Not Available	
112	400kV	Fatehbad PG-Hissar	1	D/C	89	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Bhiwani BBMB- Fatehabad	Polymer Insulator	
113	400kV	Fatehpur-Kanpur	1	S/C	100	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILU of Singrauli-
114	400kV	Fatehpur-Kanpur	2	S/C	107	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Kanpur to form Fatehpur-Panki	Partial (64%)	LILO of Allahabad- Kanpur one ckt at Fatehpur
115	400kV	Kanpur-Panki	1	S/C	6	POWERGRID	POWERGRID	UPPTCL	Twin Moose	Bypassed at Kanpur to	Polymer Insulator	
116	400kV	Kanpur-Panki	2	S/C	6	POWERGRID	POWERGRID	UPPTCL	Twin Moose	form Fatehpur-Panki	Polymer Insulator	
117	400kV	Fatehpur-Mainpuri	1	D/C	260	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Allahabad- Mainpuri (363 KM) D/C at Fatehpur Series compensated line (Degree of comp 40%)
118	400kV	Fatehpur-Mainpuri	2	D/C	260	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
119	400kV	G.Noida-Nawada	1	D/C	30	POWERGRID	UPPTCL	HVPNL	Quad Bersimis	Lilo of Ballabgarh- G.Noida at Nawada	Polymer Insulator	Ballabhgarh-Gnoida LILOed at Nawada (Faridabad,Haryana)
120	400kV	Gorakhpur PG-Gorakhpur UP	1	D/C	46	POWERGRID	POWERGRID	UPPCL	Twin Moose		Polymer Insulator	Partial Planning has been completed
121	400kV	Gorakhpur PG-Gorakhpur UP	2	D/C	46	POWERGRID	POWERGRID	UPPCL	Twin Moose		Polymer Insulator	Partial Planning has been completed

122	400kV	Gorakhpur PG-Lucknow PG	1	D/C	264	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (3%)	At crossing
123	400kV	Gorakhpur PG-Lucknow PG	2	D/C	264	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (3%)	At crossing
124	400kV	Gorakhpur PG-Basti (UP)	1	D/C	117	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO of 400kV Gorakhpur PG- Lucknow PG ckt-4 at Basti (UP). LILO portion is of UP	Not Available	
125	400kV	Gorakhpur PG-Basti (UP)	2	D/C	108	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO of 400kV Lucknow Gorakhpur-3 at Basti. LILO portion is of UP	Not Available	
126	400kV	Basti (UP)-Lucknow PG	1	D/C	204	POWERGRID	UPPTCL	POWERGRID	Twin Moose		Not Available	
127	400kV	Gurgaon-Sohna Road	1	D/C	7	POWERGRID	POWERGRID	GPTL	Quad Moose	LILO OF 400KV Guigaon	Not Available	
128	400kV	Gurgaon-Sohna Road	2	D/C	7	POWERGRID	POWERGRID	GPTL	Quad Moose	Pood by CDTI	Not Available	
129	400kV	Hamirpur-ParbatiPooling (Banala)	1	D/C	77	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Amritsar- Banala-1 at Hamirpur
130	400kV	Jaipur South-Bassi	1	D/C	37	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Agra-Bassi D/C at Jaipur South	Polymer Insulator	LILO of Agra-Bassi D/C at Jaipur South
131	400kV	Jaipur South-Bassi	2	D/C	37	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Agra-Bassi D/C at Jaipur South	Polymer Insulator	
132	400kV	Jaipur South-Kota	1	D/C	180	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
133	400kV	Jaipur South-RAPP D	1	D/C	228	POWERGRID	POWERGRID	NPCIL	Twin Moose		Not Available	
134	400kV	Jalandhar-Nakodar	1	D/C	42	POWERGRID	POWERGRID	PSTCL	Quad Moose		Polymer Insulator	
135	400kV	Jalandhar-Hamirpur	1	D/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (43%)	LILO of 400kV Amritsar- Hamirpur at Jalandhar
136	400kV	Kaithal-Hissar	1	D/C	113	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		LILO of Patiala-Hissar at Kaithal	
137	400kV	Kaithal-Hissar	2	D/C	113	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		LILO of Patiala-Hissar at Kaithal	
138	400kV	Kaithal-Malerkotla	1	S/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
139	400kV	Kankroli-Jodhpur	1	S/C	188	POWERGRID	POWERGRID	RRVPNL	Twin HTLS		Conventional	
140	400kV	Kanpur-Agra	1	S/C	240	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
141	400kV	Kanpur-Auraiya	1	D/C	73	POWERGRID	POWERGRID	NTPC	Twin Moose		Conventional	
142	400kV	Kanpur-Auraiya	2	D/C	73	POWERGRID	POWERGRID	NTPC	Twin Moose		Conventional	
143	400kV	Kanpur-Ballabgarh	1	s/c	386	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	*Series Compensated,Ckt 1- 35%, Ckt-2 & 3-40%
144	400kV	Kanpur-Ballabgarh	2	D/C	371	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	*Series Compensated,Ckt 1- 35%, Ckt-2 & 3-40%
145	400kV	Kanpur-Ballabgarh	3	D/C	371	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	*Series Compensated,Ckt 1- 35%, Ckt-2 & 3-40%
146	400kV	Kanpur-Kanpur(GIS)	1	D/C	21	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
147	400kV	Kanpur-Kanpur(GIS)	2	D/C	21	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
148	400kV	Kanpur(GIS)-Lucknow(765)	1	D/C	160	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
149	400kV	Kanpur(GIS)-Lucknow(765)	2	D/C	160	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
150	400kV	Kishenpur-NewWanpoh	1	D/C	130	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
151	400kV	Kishenpur-NewWanpoh	3	D/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
152	400kV	Kishenpur-NewWanpoh	4	D/C	135	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
153	400kV				35	POWERGRID			I WIN MOOSE			
154	400kV	Kisnenpur-Samba	2		35				I win Moose		Conventional	
155	400KV	Kota-Wierta			250	POWERGRID	POWERGRID	KKVPNL	i win ivioose		Conventional	

156	400kV	Kotputli-Bhiwadi	1	S/C	132	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of Bassi-Bhiwadi- 2 at Kotputli
157	400kV	Kurukshetra-Jind	1	D/C	103	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
158	400kV	Kurukshetra-Jind	2	D/C	103	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Not Available	
159	400kV	Kurukshetra-Sonipat	1	D/C	125	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird (Twin		Partial (99%)	LILO OF ADdullapr-
160	400kV	Kurukshetra-Sonipat	2	D/C	125	POWERGRID	POWERGRID	POWERGRID	HTLS for LILOportion)	Sonipat line at	Partial (99%)	Cononat alite at
161	400kV	Kurukshetra(PG)-Dhanansu(PS)	1	D/C	165	POWERGRID	POWERGRID	PSTCL	Quad Moose	LILUUTAOUKV	Polymer Insulator	LILO portion to be
162	400kV	Dhanansu(PS)-Jalandhar(PG)	1	D/C	106	POWERGRID	PSTCL	POWERGRID	Quad Moose	Kurukshetra-Jalandhar	Polymer Insulator	checked
163	400kV	Kurukshetra-Nakodar	1	D/C	234	POWERGRID	POWERGRID	PSTCL	Quad Moose	/LILO portion is of	Polymer Insulator	
164	400kV	Lucknow-Basti	1	D/C	203	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Not Available	
165	400kV	Lucknow-Basti	2	D/C	203	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Not Available	
166	400kV	Lucknow PG-Lucknow UP	1	S/C	63	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
167	400kV	Lucknow PG-Unnao	1	D/C	74	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
168	400kV	Lucknow PG-Unnao	2	D/C	74	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Conventional	
169	400kV	Lucknow UP-Bareilly PG	1	S/C	279	POWERGRID	UPPTCL	POWERGRID	Twin Moose		Conventional	
170	400kV	765 Lucknow (PG) - Lucknow (PG)	1	D/C	3	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
171	400kV	765 Lucknow (PG) - Lucknow (PG)	2	D/C	3	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
172	400kV	LucknowPG-Sohawal	1	D/C	98	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Balia-Lucknow (316 KM) D/C at Sohawal
173	400kV	LucknowPG-Sohawal	2	D/C	98	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
174	400kV	Lucknow PG-Shahjahanpur	1	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (10%)	
175	400kV	Lucknow PG-Shahjahanpur	2	D/C	170	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Partial (10%)	
176	400kV	Lucknow-Jehta	1	D/C	32	POWERGRID	POWERGRID	UPPTCL	Twin Moose	LILO OF 400KV LUCKNOW	Not Available	
177	400kV	Lucknow-Jehta	2	D/C	32	POWERGRID	POWERGRID	UPPTCL	Twin Moose	Unnao DC at Jenta	Not Available	
178	400kV	Ludhiana-Jalandhar	1	S/C	85	POWERGRID	POWERGRID	POWERGRID	Twin Moose	(IID) III () portion is of	Polymer Insulator	
179	400kV	Ludhiana-Malerkotla	1	S/C	36	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
180	400kV	Ludhiana-Patiala	1	D/C	76	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
181	400kV	Ludhiana-Patiala	2	D/C	76	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
182	400kV	Mainpuri-Ballabgarh	1	D/C	236	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
183	400kV	Mainpuri-Ballabgarh	2	D/C	236	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
184	400kV	Malerkotla-Patiala	1	S/C	62	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
185	400kV	Manesar- Sohna Road	1	D/C	17			GPTI	Ouad Moose	LILO OF 400KV Gurgaon-	Not Available	
105	400kV	Manesar Sohna Road	2	D/C	17			CDTL	Quad Moose	Manesar D/C at Sohna	Not Available	-
100	4006 V		2		17	POWERGRID	POWERGRID	GPIL	Quau woose	Road by GPTI	NUL AVAIIADIE	
187	400kV	Mandola-Maharanibagh	1	towers are M/C)	29	POWERGRID	POWERGRID	POWERGRID	Twin HTLS	After LILO of 400KV	Not Available	
188	400kV	Mandola-Maharanibagh	2	D/C (LILO towers are M/C)	29	POWERGRID	POWERGRID	POWERGRID	Twin HTLS	Mandola-Bawana D/C Lines at 400KV Maharanibagh(PG)	Not Available	
189	400kV	Maharanibagh-Bawana	1	D/C	29	POWERGRID	POWERGRID	DTL	Twin HTLS		Not Available	
190	400kV	Maharanibagh-Bawana	2	D/C	29	POWERGRID	POWERGRID	DTL	Twin HTLS		Not Available	
191	400kV	Meerut-Bagpat	1	D/C	71	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
192	400kV	Meerut-Bagpat	2	D/C	71	POWERGRID	POWERGRID	POWERGRID	Twin Moose	LILO of Meerut-Kaithal DC at Baghpat	Polymer Insulator	
193	400kV	Meerut-Mandola	1	D/C	60	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
194	400kV	Meerut-Mandola	2	D/C	60	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
195	400kV	Meerut-Muzzafarnagar	1	S/C	37	POWERGRID	POWERGRID	UPPTCL	Twin Moose		Polymer Insulator	
196	400kV	Moga-Fatehabad	1	D/C	179	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
197	400kV	Moga-Hissar	1	D/C	209	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bypassed at Hissar to form Moga- Bhiwani(PG)	Polymer Insulator	

198	400kV	Moga-Hissar	2	D/C	206	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	LILO of Bhiwadi-Moga both ckts at Hisar
199	400kV	Moga-Hissar	3	D/C	206	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
200	400kV	Moga-Jalandhar	1	D/C	85	POWERGRID	POWERGRID	POWERGRID	Twin ACAR		Polymer Insulator	
201	400kV	Moga-Jalandhar	2	D/C	85	POWERGRID	POWERGRID	POWERGRID	Twin ACAR		Polymer Insulator	
202	400kV	Muradnagar-Hapur	1	S/C	28	POWERGRID	UPPTCL	UPPTCL	Twin Moose	Muradaadaa LIL Ood at	Not Available	
203	400kV	Moradabad-Hapur	2	S/C	109	POWERGRID	UPPTCL	UPPTCL	Twin Moose	Hanur: LILO portion of	Not Available	
204	400kV	Nallagarh-Koldam	1	D/C	46	POWERGRID	POWERGRID	NTPC	Quad Moose		Conventional	Koldam to Parbati
205	400kV	Nallagarh-Patiala	1	D/C	94	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
206	400kV	Nallagarh-Patiala	2	D/C	94	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	
207	400kV	Nathpa Jhakri-Gumma	1	D/C	55	POWERGRID	SJVNL	HPPTCL	Triple Snowbird		Not Available	
208	400kV	Nathpa Jhakri-Gumma	2	D/C	55	POWERGRID	SJVNL	HPPTCL	Triple Snowbird	Banchkula line at	Not Available	
209	400kV	Gumma-Panchkula	1	D/C	112	POWERGRID	HPPTCL	POWERGRID	Triple Snowbird	Gumma	Not Available	
210	400kV	Gumma-Panchkula	2	D/C	112	POWERGRID	HPPTCL	POWERGRID	Triple Snowbird	Guinna	Not Available	
211	400kV	Nathpa Jhakri-RampurHEP	1	D/C	21	POWERGRID	SJVNL	SJVNL	Triple Snowbird	Nathpa Jhakri-	Conventional	LILO OF JNAKH-INALAgarn-
212	400kV	Nathpa Jhakri-RampurHEP	2	D/C	21	POWERGRID	SJVNL	SJVNL	Triple Snowbird	Nallagarn LILOed at	Conventional	
213	400kV	NeemranaPG-Manesar	1	D/C	67	POWERGRID	POWERGRID	POWERGRID	Twin Moose	Bambur HEP	Polymer Insulator	
214	400kV	NeemranaPG-Manesar	2	D/C	67	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
215	400kV	NeemranaPG-Babai	1	D/C	85	POWERGRID	POWERGRID	RRVPNL	Twin Moose	LILO PORTION IF OF NRSS36(B), LILO of 400kV Neemrana-Sikar 1 at Babai	Not Available	LILO of 400kV Neemrana-Sikar at Babai by NRSSXXXVI (Essel group): Earlier 29% of Neemrana- Sikar PG
216	400kV	NeemranaPG-Sikar	2	D/C	176	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Not Available	
217	400kV	NewWanpoh-Wagoora	1	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
218	400kV	NewWanpoh-Wagoora	2	D/C	57	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
219	400kV	Orai(PG)-Orai	1	D/C	42	POWERGRID	POWERGRID	UPPTCL	Quad Moose		Not Available	
220	400kV	Orai(PG)-Orai	2	D/C	42	POWERGRID	POWERGRID	UPPTCL	Quad Moose		Not Available	
221	400kV	Panchkula -Abdullapur	1	D/C	63	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	LILO of Jhakri- Abdullapur at Panchkula
222	400kV	Panchkula -Abdullapur	2	D/C	63	POWERGRID	POWERGRID	POWERGRID	Triple Snowbird		Polymer Insulator	LILO OF JNAKN-
223	400kV	Patiala-Panchkula	1	D/C	65	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
224	400kV	Patiala-Panchkula	2	D/C	65	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Polymer Insulator	
225	400kV	Patiala-Patran	1	D/C	79	POWERGRID	POWERGRID	PTCL	Triple Snowbird	LILO of 400kV D/C	Polymer Insulator	LILO of 400 kV Kaithal-
226	400kV	Patiala-Patran	2	D/C	79	POWERGRID	POWERGRID	PTCL	Triple Snowbird	Patiala - Kaithal Line at	Polymer Insulator	
227	400kV	Patran-Kaithal	1	D/C	47	POWERGRID	PTCL	POWERGRID	Triple Snowbird	Patran SS under the	Polymer Insulator	
228	400kV	Patran-Kaithal	2	D/C	47	POWERGRID	PTCL	POWERGRID	Triple Snowbird	ownership of PTCL.	Polymer Insulator	
229	400kV	RampurHEP-Nallagarh	1	D/C	128	POWERGRID	SJVNL	POWERGRID	Triple Snowbird	Nalladarh I II Oed at	Conventional	
230	400kV	RampurHEP-Nallagarh	2	D/C	128	POWERGRID	SJVNL	POWERGRID	Triple Snowbird	Rampur HEP	Conventional	
231	400kV	RAPS-C-Chittorgarh	1	D/C	155	POWERGRID	NPCIL	RRVPNL	Twin Moose		Partial (38%)	LILO of 400 kV Rapp C- Kankroli at Chhitorgarh
232	400kV	RAPS-C-Kankroli	1	D/C	199	POWERGRID	NPCIL	POWERGRID	Twin Moose		Partial (51%)	

233	400kV	RAPS-C-Kota	1	s/c	51	POWERGRID	NPCIL	POWERGRID	Twin Moose		Partial (55%)	400kV RAPS-Jaipur line whose work was completed till Kota section is connected with 400kV Raps- Kota#2 (for antitheft purpose) and hence 400kV RapsC-Kota #2 is now two twin moose lines connected in parallel paths
234	400kV	RAPS-C-Kota	2	D/C	55	POWERGRID	NPCIL	POWERGRID	Twin Moose	D/C with 400kV Jaipur- RAPP D line	Not Available	
235	400kV	Rasra-Balia	1	S/C	46	POWERGRID	UPPTCL	POWERGRID	Twin Moose	Mau-II at Rasara I II O	Not Available	
236	400kV	Rasra-Mau	1	S/C	38	POWERGRID	UPPTCL	UPPTCL	Twin Moose	nortion is of LIP	Not Available	
237	400kV	Rihand-Allahabad	1	D/C	279	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
238	400kV	Rihand-Allahabad	2	D/C	279	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
239	400kV	Roorkee-Kashipur	1	D/C	151	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (72%)	
240	400kV	Roorkee-Kashipur	2	D/C	151	POWERGRID	POWERGRID	PTCUL	Quad Moose		Partial (72%)	
241	400kV	Roorkee-Saharanpur	1	D/C	36	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Polymer Insulator	
242	400kV	Roorkee-Dehradun	1	D/C	80	POWERGRID	POWERGRID	POWERGRID	Quad Moose		Partial (50%)	
243	400kV	Sarnath-Varanasi	1	D/C	70	POWERGRID	UPPTCL	POWERGRID	Quad Moose		Partial (52%)	LILO of Sarnath- Allahabad (144 KM) at 765/400kV Varanasi
244	400kV	Sarnath-Varanasi	2	D/C	107	POWERGRID	UPPTCL	POWERGRID	Quad Moose		Partial (52%)	
245	400kV	Shahjahanpur-Bareilly PG	1	D/C	116	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
246	400kV	Shahjahanpur-Bareilly PG	2	D/C	116	POWERGRID	POWERGRID	POWERGRID	Twin Moose		Conventional	
247	400kV	Shahjahanpur-Rosa	1	D/C	8	POWERGRID	POWERGRID	UPPCL	Twin Moose		Not Available	
248	400kV	Shahjahanpur-Rosa	2	D/C	8	POWERGRID	POWERGRID	UPPCL	Twin Moose		Not Available	
249	400kV	Shree Cement-Kota	1	D/C	208	POWERGRID	Sh. Cement	POWERGRID	Twin Moose		Polymer Insulator	
250	400kV	Shree Cement-Merta Sikar-Babai	1	D/C D/C	95	POWERGRID	POWERGRID	RRVPNL	Twin Moose	LILO PORTION IF OF NRSS36(B), LILO of 400kV Neemrana-Sikar 1 at Babai	Not Available	
252	400kV	Sikar-Ratangarh	1	D/C	76	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Conventional	
253	400kV	Sikar-Ratangarh	2	D/C	76	POWERGRID	POWERGRID	RRVPNL	Twin Moose		Conventional	
254	400kV	Singrauli-Allahabad	1	S/C	224	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
255	400kV	Singrauli-Allahabad	2	S/C	202	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
256	400kV	Singrauli-Allahabad	3	S/C	215	POWERGRID	NTPC	POWERGRID	Twin Moose		Not Available	
257	400kV	Singrauli-Anpara	1	S/C	25	POWERGRID	NTPC	UPPTCL	Twin Moose		Partial (91%)	
258	400kV	Singrauli-Fatehpur	1	s/c	331	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	Kanpur at Fatehpur
259	400kV	Singrauli-LucknowUP	1	S/C	409	POWERGRID	NTPC	UPPTCL	Twin Moose		Conventional	
260	400kV	Singrauli-Rihand	1	S/C	42	POWERGRID	NTPC	NTPC	Twin Moose		Conventional	
261	400kV	Singrauli-Rihand	2	S/C	44	POWERGRID	NTPC	NTPC	Twin Moose		Conventional	
262	400kV	Singrauli-Vindhyachal	1	S/C	3	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
263	400kV	Singrauli-Vindhyachal	2	S/C	5	POWERGRID	NTPC	POWERGRID	Twin Moose		Conventional	
264	400kV	Koteswar(PG)-Koteswar(THDC)		D/C	3	POWERGRID	POWERGRID	THDC	Twin Moose		Conventional	
265	400kV	Koteswar(PG)-Koteswar(THDC)	2	D/C	3	POWERGRID	POWERGRID	THDC	Twin Moose		Conventional	
266	400kV	Tehri-Koteshwar(PG)	3	S/C	14	POWERGRID	THDC	POWERGRID	Quad Moose		Not Available	

267	400kV	Unnao-Jehta	1	D/C	70	POWERGRID	UPPTCL	UPPTCL	Twin Moose	LILO of 400kV Lucknow Unnao DC at Jehta (UP). LILO portion is of UP	Not Available	
268	400kV	Unnao-Jehta	2	D/C	70	POWERGRID	UPPTCL	UPPTCL	Twin Moose	LILO of 400kV Lucknow Unnao DC at Jehta (UP). LILO portion is of UP	Not Available	
269	400kV	Uri-II - Uri-I	1	s/c	10	POWERGRID	NHPC	NHPC	Twin Moose		Conventional	LILO of 400kV Uri-I - Wagoora D/C at Amargarh
270	400kV	Uri-II - Wagoora	1	S/C	105	POWERGRID	NHPC	POWERGRID	Twin Moose		Conventional	
271	400kV	Jauljivi-Bareilly_2	1	D/C	205	POWERGRID	POWERGRID	POWERGRID	Twin Moose	After LILO of 400kV Dhauliganga - Bareilly(UP) Double circuit line(Initially LILOed at Pithoragarh and charged at 220kV level) at Jauljivi(PG)	Not Available	
272	400kV	Jauljivi-Bareilly_2	2	D/C	205	POWERGRID	POWERGRID	POWERGRID	Twin Moose	After LILO of 400kV Dhauliganga - Bareilly(UP) Double circuit line(Initially LILOed at Pithoragarh and charged at 220kV level) at Jauljivi(PG)	Not Available	
B. POW	ERLINK Transmissi	ion Ltd										
1	400kV	Bareilly PG-Meerut	1	D/C	250	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Bareilly PG-
2	400kV	Bareilly PG-Meerut	2	D/C	250	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	Mandola-1 (241 Km) at
3	400kV	Bareilly UP-Bareilly PG	1	D/C	14	POWERLINK	UPPTCL	POWERGRID	Twin Moose		Polymer Insulator	
4	400kV	Bareilly UP-Bareilly PG	2	D/C	14	POWERLINK	UPPTCL	POWERGRID	Twin Moose		Polymer Insulator	*0
5	400kV	Gorakhpur PG-Lucknow PG	1	D/C	246	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	*Series compensated
6	400kV	Gorakhpur PG-Lucknow PG	2	D/C	246			I POWERGRID I	Twin Moose			lino
-				, D./O	4.0.0	DOWERLINK	POWERGRID		- · · · ·		Conventional	
7	400kV	Meerut-Mandola	3	D/C	102	POWERLINK	POWERGRID	POWERGRID	Twin Moose		Conventional	LILO of Bareilly PG-
7 8	400kV 400kV	Meerut-Mandola Meerut-Mandola	3 4	D/C D/C	102 102	POWERLINK POWERLINK POWERLINK	POWERGRID POWERGRID POWERGRID	POWERGRID POWERGRID	Twin Moose Twin Moose		Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI	400kV 400kV	Meerut-Mandola Meerut-Mandola	3 4	D/C D/C	102 102	POWERLINK POWERLINK	POWERGRID POWERGRID POWERGRID	POWERGRID POWERGRID	Twin Moose Twin Moose		Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1	400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar	3 4 1 2	D/C D/C D/C	102 102 78	POWERLINK POWERLINK POWERLINK	POWERGRID POWERGRID POWERGRID PKTSL	POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS		Conventional Conventional Conventional Not Available	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adap	400kV 400kV 400kV 400kV i Transmission Ind	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar	3 4 1 2	D/C D/C D/C D/C	102 102 78 78	POWERLINK POWERLINK POWERLINK PKTSL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL	POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS		Conventional Conventional Conventional Not Available Not Available	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1	400kV 400kV 400kV 400kV i Transmission Ind 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG	3 4 1 2	D/C D/C D/C D/C	102 102 78 78 50	POWERLINK POWERLINK POWERLINK PKTSL PKTSL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL	POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose		Conventional Conventional Conventional Not Available Not Available	ullo of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2	400kV 400kV 400kV i Transmission Ind 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG	3 4 1 2 1 2	D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose		Conventional Conventional Not Available Not Available Conventional Conventional	LLO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG	3 4 1 2 1 2 3	D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 50 56	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose	Bypassed at 400kV	Conventional Conventional Not Available Not Available Conventional Conventional Not Available	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG	3 4 1 2 1 2 3 4	D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 50 56 56	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG MahindergarhHVDC-Dhanonda	3 4 1 2 1 2 3 4 1	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 56 56 5	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda	Conventional Conventional Not Available Not Available Conventional Not Available Not Available Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6	400kV 400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda	3 4 1 2 1 2 3 4 1 2 2 3	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 56 5 5 5	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Conventional Not Available Conventional Not Available Not Available Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 200kV 200kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani AG Mahindergarh (APL)-Bhiwa	3 4 1 2 3 4 1 2	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 56 5 5 5	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Conventional Not Available Conventional Conventional Not Available Not Available Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka	3 4 1 2 1 2 3 4 1 2 2	D/C D/C D/C D/C D/C D/C D/C D/C D/C D/C	102 102 78 78 50 50 56 56 5 5 5 5 5 5 66	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Not Available Not Available Not Available Conventional Conventional Conventional Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh HVDC-Dhanonda MahindergarhHVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 3 4 1 2 2	D/C	102 102 78 78 50 50 56 56 55 5 5 5 5 66 66	POWERLINK POWERLINK PWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available Conventional Conventional Conventional Conventional Polymer Polymer	ullC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI	400kV 400kV 400kV i Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG MahindergarhHVDC-Dhanonda MahindergarhHVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 2 3 4 1 2 2	D/C	102 102 78 78 50 50 56 56 56 5 5 5 5 66 66 66	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Conventional Not Available Not Available Conventional Conventional Conventional Conventional Conventional Polymer Polymer	ullC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 1	400kV 400kV 400kV 1 Transmission Ind 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV 400kV L (Powergrid Himau 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG MahindergarhHVDC-Dhanonda orporation Pvt Ltd.) Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka Jhajjar (IGSTPS)-Mundka	3 4 1 2 3 4 1 2 3 4 1 2 2 1 2	D/C	102 102 78 78 50 50 56 56 56 55 5 5 66 66 66 66 39	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available Not Available Conventional Conventional Polymer Polymer Conventional	LLO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 6 E. APCP 1 2 F. PHTI 2 F. PHTI 1 2	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV L (Powergrid Hima 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhi	3 4 1 2 3 4 1 2 3 4 1 2 1 2 1 2 1 2 1 2	D/C	102 102 78 78 50 50 56 56 56 5 5 5 5 66 66 66 66 39 39	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL AP	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Not Available Conventional Conventional Polymer Polymer Conventional Conventional	LLO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 1 2 3 3	400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV 400kV L (Aravali Power C 400kV L (Powergrid Hima 400kV 400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar I ttd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwan	3 4 1 2 3 4 1 2 2 1 2 1 2 1 1 2 1	D/C	102 102 78 78 50 50 56 56 56 5 5 5 5 66 66 66 66 60 39 39 39	POWERLINK POWERLINK POWERLINK ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATIL	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL POWERGRID POWERGRID PKATL	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL HPPTCL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Twin Moose Twin Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form	Conventional Conventional Not Available Not Available Conventional Conventional Not Available Conventional Conventional Polymer Polymer Conventional Conventional Conventional	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 1 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 1 2 3 4 - - - - - - - - - - - - -	400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar I Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwan	3 4 1 2 3 4 1 2 2 1 2 1 2 1 2 1 1 2 1	D/C	102 102 78 78 50 50 56 56 55 5 5 66 66 66 66 66 60 39 39 39 174	POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL PKTSL PKTSL PKTL PHTL PHTL PHTL PHTL PHTL PHTL PHTL PH	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL POWERGRID POWERGRID PWKATL JSW	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL HPPTCL HPPTCL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo	Conventional Conventional Conventional Not Available Not Available Conventional Not Available Conventional Conventional Polymer Polymer Conventional Conventional Conventional Not Available	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 F. PHTI 2 7 5 F. PHTI 2 2 3 4 5 5	400kV 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar I ttd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwan	3 4 1 2 3 4 1 2 3 4 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2	D/C	102 102 78 78 50 50 56 56 5 5 5 5 5 5 66 66 66 60 39 39 39 174 1 1 22	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL PKTSL PKTSL PKTL PHTL PHTL PHTL PHTL PHTL PHTL PHTL PH	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL POWERGRID POWERGRID POWERGRID PWATL JSW	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL PKATL PKATL HPPTCL HPPTCL HPPTCL	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo (HP)	Conventional Conventional Conventional Not Available Not Available Conventional Not Available Conventional Conventional Polymer Polymer Conventional Conventional Not Available Not Available Not Available Not Available	LLC of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 6 E. APCP 1 2 7 F. PHTI 1 2 3 3 4 5 6 6 7	400kV 400kV 400kV i Transmission Ind 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwa	3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 2 3 4 1 2 3 4 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2	D/C	102 102 78 78 50 50 56 56 5 5 5 5 5 5 5 5 5 5 7 7 8 66 66 66 66 39 39 39 39 174 1 1 22	POWERLINK POWERLINK POWERLINK PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL PHTL PHTL PHTL PHTL PHTL PHTL PHTL PHT	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL APL PCPL APL POWERGRID POWERGRID POWERGRID PWERGRID PWERGRID PWERGRID PWERGRID PWERGRID PWERGRID POWERGRID	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL DTL DTL DTL HPPTCL HPPTCL HPPTCL HPPTCL SSW	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo (HP)	Conventional Conventional Conventional Not Available Not Available Conventional Not Available Not Available Conventional Conventional Conventional Conventional Not Available Conventional Not Available Not Available Conventional Not Available Not Available Conventional Not Available Conventional Not Available Not Available Conventional	LILO of Bareilly PG- Mandola-1&2 (241 Km)
7 8 C. PKTSI 2 D. Adan 1 2 3 4 5 6 E. APCP 1 2 7 F. PHTI 2 3 3 4 5 6 6 7 7 °	400kV 400kV 400kV i Transmission Ind 400kV	Meerut-Mandola Meerut-Mandola Khetri-Sikar Khetri-Sikar Khetri-Sikar ia Ltd. Mahindergarh (APL)-Bhiwani PG Mahindergarh (APL)-Bhiwani PG Mahinderga	3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1	D/C D/C	102 102 78 78 50 50 56 56 56 5 5 5 66 66 66 66 66 39 39 39 174 1 1 22 22 22	POWERLINK POWERLINK POWERLINK PKTSL PKTSL ATIL ATIL ATIL ATIL ATIL ATIL ATIL ATI	POWERGRID POWERGRID POWERGRID PKTSL PKTSL APL APL APL APL APL APL APL APL POWERGRID POWERGRID POWERGRID PWERGRID PWERGRID PWERGRID SW JSW	POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID POWERGRID HVPNL HVPNL DTL DTL DTL DTL PKATL PKATL HPPTCL HPPTCL HPPTCL JSW JSW	Twin Moose Twin Moose Twin HTLS Twin HTLS Twin Moose Twin Moose Twin Moose Quad Moose	Bypassed at 400kV Bhiwani to form 400kV Bypassed at Dhanonda to form Karcham-Kala Amb LILOed at Wangtoo (HP)	Conventional Conventional Conventional Not Available Conventional Conventional Not Available Not Available Conventional Conventional Conventional Conventional Conventional Not Available Not Available Not Available Not Available Not Available Conventional Convention	LILO of Bareilly PG- Mandola-1&2 (241 Km)

			1					1				
9	400kV	Karcham Wangtoo-NJPC	2	D/C	34	PHTL	JSW	SJVNL	Triple snowbird		Conventional	_
10	400kV	Sorang-Wangtoo	1	D/C	21	PHTL	SORANG	HPPTCL	Quad Moose		Not Available	_
11	400kV	Sorang-Kala Amb	1	D/C	160	PHTL	SORANG	PKATL	Quad Moose		Not Available	
G. PKTC	L (Parbati-Koldam	Transmission)										
1	400kV	Koldam-Ludhiana	1	D/C	151	РКТСІ	NTPC	POWERGRID	Triple Snowbird		27% Polymer & 73%	
-	40000		-	5/0	151	TRICE		TOWERGRAD	Thpic Showbird		porcelain	
2	400kV	Koldam-Ludhiana	2	D/C	151	PKTCI	NTPC	POWERGRID	Triple Spowbird		27% Polymer & 73%	
2	4008 0		2	D/C	151	FRICE	NIFC	POWERGRID	Thple Showbird		porcelain	
3	400kV	Koldam-Banala	1	D/C	67	PKTCL	NTPC	POWERGRID	Quad Moose		100% porcelain	
4	400kV	Nallagarh-Banala	1	D/C	62	PKTCL	POWERGRID	POWERGRID	Quad Moose		100% porcelain	Powergrid owned 46.38km
5	400kV	Parbati-II- ParbatiPooling (Banala)	1	S/C	13	PKTCL	NHPC	POWERGRID	Quad Moose		100% porcelain	Some portion is of
6	400kV	Parbati-III- ParbatiPooling (Banala)	1	S/C	4	PKTCL	NHPC	POWERGRID	Quad Moose		100% porcelain	Powergrid
7	400kV	Parbati II- Sainj	1	S/C	1	PKTCL	NHPC	HPPCL	Quad Moose		100% porcelain	LILO of 400kV Parbati I
8	400kV	Parbati III- Saini	1	S/C	9	PKTCL	NHPC	HPPCL	Quad Moose		100% porcelain	Parbati III at Sainj
H. INDIG	RID:NRSS-29 Tran	smission Company Limited				-						
1	400kV	Jalandhar-Samba	1	D/C	135	NRSS-29	POWERGRID	POWERGRID	Twin Moose		Polymer	
2	400kV	Jalandhar-Samba	2	D/C	135	NRSS-29	POWERGRID	POWERGRID	Twin Moose		Polymer	
3	400kV	Amargarh-Samba	1	D/C	286	NRSS-29	NRSS-29	POWERGRID	Twin Moose		Polymer	
4	400kV	Amargarh-Samba	2	D/C	286	NRSS-29	NRSS-29	POWERGRID	Twin Moose		Polymer	
5	400kV	Uri-I - Amargarh	1	D/C	62	NRSS-29	NHPC	NRSS-29	Twin Moose	LILO of 400kV D/C Uri-	Polymer	
6	400kV	Uri-I - Amargarh	2	D/C	62	NRSS-29	NHPC	NRSS-29	Twin Moose	I – Wagoora Line at	Polymer	
7	400kV	Amargarh - Wagoora	1	D/C	36	NRSS-29	NRSS-29	POWERGRID	Twin Moose	Amargarh SS under the	Polymer	
8	400kV	Amargarh - Wagoora	2	D/C	36	NRSS-29	NRSS-29	POWERGRID	Twin Moose	ownership of NRSS-	Polymer	
. Power	grid Unchahar Tra	nsmission Ltd.		5/0		11135-23	11135-23		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u></u>	- orginer	
1	40041/	Fatebour-Unchabar	1	D/C	5/	PLITI	POWERGRID	NRDDI	Twin Moose		Not Available	
2	40041	Fatehnur-Unchahar	2		5/		POWERGRID	NRDDI	Twin Moose		Not Available	
. NRSSX	XXI(B) (Sekura En	ergy)		5/0	54	1.512	- Official and		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Hot Wallable	
1	400kV	Amritsar-Malerkotla	1	D/C	149	NRSSXXXXI/R)	POWERGRID	POWERGRID	Twin Moose		Polymer	
2	40041	Amritsar-Malerkotla	2		1/10		POWERGRID	POWERGRID	Twin Moose		Polymer	
3	400kV	Kurukshetra-Malerkotla	1	D/C	139	NRSSXXXXI(B)	POWERGRID	POWERGRID	Twin Moose		Polymer	
4	400kV	Kurukshetra-Malerkotla	2		139	NRSSXXXXI(B)	POWERGRID	POWERGRID	Twin Moose		Polymer	-
(. Gurga	on Palwal Transm	ission Ltd.	<u></u>	5/0	135				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		- orginer	
1	400kV	Dhanoda-Neemrana	1	D/C	47	GPTI	HVPNI	POWERGRID	Twin HTLS	Bypassed at Dhanonda	Polymer	
2	40041	Dhanoda-Neemrana	2		47	GPTI	HVDNI	POWERGRID	Twin HTLS	to form	Polymer	
2	400kV	Prithala-Kadarnur	1		29	GPTI	GPTI	GPTI	Twin HTLS		Polymer	
4	400kV	Prithala-Kadarpur	2		29	GPTI	GPTI	GPTI	Twin HTLS		Polymer	-
5	400kV	Prithala(GPTI)-Aligarh(PG)	1		10	GPTI	GPTI	POWERGRID	Twin HTLS		Polymer	
6	40041	Prithala(GPTI)-Aligarh(PG)	2		49	GPTI	GPTI	POWERGRID	Twin HTIS		Polymor	
7	40060	Kadarpur-Sohna Road	1		10	GPTI	GPTI	GPTI			Polymor	
/ 8	400KV	Kadarpur-Sohna Road	2		10	GPTL	GPTL	GPTI			Polymor	
O ERTI	HUUKV		<u> </u>		10	GFIL	GFIL	Grit	I WIII FILD		rotymer	
1	400kV	APEDRI Estobrarh Booling	1	D/C	1	СРТІ	ЕРТІ		Ound moose		Not Available	
2	400KV		2		1				Quad moose		Not Available	-
2	400KV	ANLENL-Falengan Pooling	2	D/C	1	FBIL	FDIL	FBIL	Quau moose	LILO of 400kV	NOT AVAILABLE	-
3	400kV	Fatehgarh II-Fatehgarh Pooling	1	D/C	45	FBTL	POWERGRID	FBTL	Hexa Zebra+ Twin HTLS	Fatehgarh I-Bhadla-1 at Fatehgarh II. LILO Portion is of Powergrid	Not Available	
4	400kV	Fatehgarh II-Fatehgarh Pooling	2	D/C	45	FBTL	POWERGRID	FBTL	Hexa Zebra+ Twin HTLS		Not Available	
M. PBTS	L											_
1	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	1	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	

2	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	2	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	
3	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	3	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	
4	400kV	Bikaner_2 (PBTSL)-Khetri (PKTSL)	4	D/C (some towers M/C)	275	PBTSL	PBTSL	PKTSL	Twin HTLS		Not Available	
5	400kV	Khetri (PKTSL)-Bhiwadi(PG)	1	D/C	126	PBTSL	PKTSL	POWERGRID	Twin HTLS		Not Available	
6	400kV	Khetri (PKTSL)-Bhiwadi(PG)	2	D/C	126	PBTSL	PKTSL	POWERGRID	Twin HTLS		Not Available	
N. PRTL		T										
1	400kV	Jaisalmer(RS)-Fatehgarh_III(PG)	1	D/C	50	PRTL	RAJASTHAN	PRTL	Twin HTLS		Not Available	
2	400kV	Jaisalmer(RS)-Fatehgarh_III(PG)	2	D/C	50	PRTL	RAJASTHAN	PRTL	Twin HTLS		Not Available	
3	400kV	Fatehgarh_III(PG)- Fatehgarh_II(PG)	1	D/C	44	PRTL	PRTL	POWERGRID	Twin HTLS		Not Available	
4	400kV	Fatehgarh III(PG)- Fatehgarh II(PG)	2	D/C	44	PRTL	PRTL	POWERGRID	Twin HTLS		Not Available	
O. NRSS	-36	, <u> </u>										
1	400kV	Babai(RS)-Bhiwani(PG)	1	D/C	111	NRSS-36	NRSS-36	POWERGRID	Twin Moose		Not Available	
2	400kV	Babai(RS)-Bhiwani(PG)	2	D/C	111	NRSS-36	NRSS-36	POWERGRID	Twin Moose		Not Available	
PE Cor	anacted at IST	S Dedicated Lines		-/0								
RE COI	intected at 15	is Deulcaleu Lilles										
A. RENE	W		1	· · ·	,		1	1	1			
1	400kV	Bikaner(PG) - Bikaner (Renew)	1	S/C	5	RENEW	POWERGRID	RENEW	Twin Moose		Not Available	
B. Avaad	la	1										
1	400kV	Bikaner(PG)-Avaada	1	S/C	14	AEPL	POWERGRID	AEPL	Twin Moose		Not Available	
C. ARPO	PL											
1	400kV	Bikaner(PG)-Ayana	1	s/c	12	ARPOPL	PGCIL	Ayana	ACSR Twin Moose+AL 59		Not Available	
D. Azure	2											
1	400kV	Bikaner(PG)-Azure 43 PSS	1	S/C	9	Azure	POWERGRID	Azure 43 PSS	Twin Moose		Not Available	
2	400kV	Azure43(RSS)-Azure 43 PSS	1	S/C	3	Azure	Azure 43 PSS	Azure 43 RSS	Twin Moose		Not Available	
E. RSRPL								•				
1 F. NTPC	400kV	Bikaner(RENEW) - Renew Surya Ravi	1	S/C	13	RSRPL	RENEW	RSRPL	Twin Moose		Not Available	
1	400kV	Bhadla II - Kolavat	1	D/C	29	NTPC	POWERGRID	NTPC	Quad Moose		Not Available	
2		Kolavat - Kolavat 2	1	D/C	25	NTPC	NTPC	NTPC	Quad Moose		Not Available	
			1	D/C	2	NIFO	NIFC	NIFC			NUL AVAILABLE	
SIAIE	LINES											
A. DTL												
1	400kV	Bamnauli-Tughlakabad	1	M/C	68	DTL	DTL	POWERGRID		Tower is quad circuit tower	Polymer Insulator	
2	400kV	Bamnauli-Tughlakabad	2	M/C	68	DTL	DTL	POWERGRID		Tower is quad circuit tower	Polymer Insulator	
3	400kV	Bamnoli-Jhatikara	1	D/C	12	DTL	DTL	POWERGRID	Quad bersimis		Polymer Insulator	
4	400kV	Bamnoli-Jhatikara	2	D/C	12	DTL	DTL	POWERGRID	Quad bersimis		Polymer Insulator	
5	400kV	Bawana-Mundka	1	D/C	18	DTL	DTL	DTL	Quad bersimis		Polymer Insulator	
6	400kV	Bawana-Mundka	2	D/C	18	DTL	DTL	DTL	Quad bersimis		Polymer Insulator	
7	400kV	Jhatikara-Mundka	1	D/C	17	DTL	POWERGRID	DTL	Quad bersimis		Polymer Insulator	
8	400kV	Jhatikara-Mundka	2	D/C	17	DTL	POWERGRID	DTL	Quad bersimis		Polymer Insulator	
B. HVPNL												
1	400kV	CLP Jhajjar - Dhanonda	1	D/C	20	HVPNL	CLP Jhajjar	HVPNL	Twin Moose		Conventional	
2	400kV	CLP Jhaijar - Dhanonda	2	D/C	20	HVPNI	CLP Ihaiiar	HVPNI	Twin Moose		Conventional	
-	400kV	CI P Ibaijar- Kabulour	1	D/C	25		CLP Inajjar	HVPNI	Quad Moose		Already had Anti fog	
	400kV	CLP Ibajjar-Kabulpur	2	D/C	35	IKIDI	CI P Inajjar	HVDNI	Quad Moose		Polymer Insulator	
	40000	Doopolpur Kobulpur	1		67		KT Ibaijar		Quad Moore		Installed on over	
	400KV		1		67		KT Jhajjar		Quad Moose		toword	
0	400K V	реерариі-каририі	2	D/C	07	JKIPL	l Ki inajjař	HVPINL			towers	

8 400kV Ohnode-Daultabad 2 D/C 73 HVPNL HVPNL HVPNL Quad Moose Afreedy had Polymer Insulator Name 10 400kV Gurgaon-Daultabad 1 D/C 21 HVPNL POWERGRID HVPNL Quad Moose Polymer Insulator Insulator Polymer Insulator 11 400kV Jhajjar-Daultabad 1 D/C 64 HVPNL APCPL HVPNL Quad Moose Polymer Insulator 12 400kV Jhajjar-Daultabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 13 400kV Khedar-Fatchabad 1 D/C 51 HVPNL POWERGRID Twin Moose Polymer Insulator 14 400kV Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 15 400kV Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moo	
9 400kv Gurgaon-Daultabad 1 D/C 21 HVPNL POWERGRID HVPNL Quad Moose Insulator S 10 400kv Gurgaon-Daultabad 2 D/C 64 HVPNL POWERGRID HVPNL Quad Moose Polymer Insulator 12 400kv Inajar-Daulatabad 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 12 400kv Inajar-Daulatabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 13 400kv Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 14 400kv Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator Insulator 5 Guokv Ind-Kirori 1 D/C 6.2 HVPNL HVPNL Twin Moose PolymerInsulator 1 D/C	
10 400kv Gurgaon-Daultabad 2 D/C 21 HVPNL POWERGRID HVPNL Quad Moose Polymer Insulator 11 400kv Ihajjar-Daulatabad 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 12 400kv Ihajjar-Daulatabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 13 400kv khajar-Daulatabad 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 14 400kv Ind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 15 400kv Jind-Kirori 2 D/C 51 HVPNL PVWL Twin Moose Polymer Insulator 16 400kv Khedar-Kirori 1 D/C 64 HVPNL HVPNL Twin Moose Conventional Figure 1 16 400kv	Six towers multi-circuit
11 400kV Jhajar-Daulatabad 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 12 400kV Jhajar-Daulatabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 13 400kV Jhad-Kirori 1 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer Insulator 14 400kV Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 15 400kV Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 16 400kV Khedar-Kirori 1 D/C 62 HVPNL HVPNL Twin Moose Conventional pl 17 400kV Khedar-Kirori 1 D/C 64 HVPNL HVPNL Twin Moose Conventional pl 18 400kV Khedar-Nuhawali 1 D/C 78 HVPNL HVPNL HVPNL	with Bamnauli-
12 400kV Jhajjar-Daulatabad 2 D/C 64 HVPNL APCPL HVPNL Twin Moose Polymer insulator 13 400kV Khedar-Fatehabad 1 D/C 40 HVPNL POWERGRID Twin Moose Polymer insulator Implementation in the insulator Polymer insulator <td< td=""><td>Partial (84%),</td></td<>	Partial (84%),
13 400kv Khedar-Fatehabad 1 D/C 40 HVPNL HPGCL POWERGRID Twin Moose Polymer Insulator Indextore Polymer Insulator 14 400kv Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 16 400kv Jind-Kirori 1 D/C 6.2 HVPNL HVPNL HVPNL Twin Moose Polymer Insulator 17 400kv Khedar-Kirori 1 D/C 6.2 HVPNL HPGCL HVPNL Twin Moose Conventional Polymer Insulator 18 400kv Khedar-Kirori 1 D/C 6.4 HVPNL HPGCL HVPNL Twin Moose Conventional Polymer Insulator 19 400kv Khedar-Kirori 1 D/C 78 HVPNL HVPNL Twin Moose Conventional Polymer Insulator 2 400kv Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional 1 400kv Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available	Remaining pending
14 400kV Jind-Kirori 1 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 15 400kV Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 16 400kV Khedar-Kirori 1 D/C 6.2 HVPNL HPGCL HVPNL Twin Moose Conventional P 18 400kV Khedar-Nuhiawali 1 D/C 6 HVPNL HPGCL HVPNL Twin Moose Conventional E 18 400kV Khedar-Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional E 19 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional E 2 400kV Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID	Presently there is no planning of replacment of Convention disc Insulator with Polymer Insulators
15 400kV Jind-Kirori 2 D/C 51 HVPNL POWERGRID HVPNL Twin Moose Polymer Insulator 16 400kV Khedar-Kirori 1 D/C 6.2 HVPNL HVPCL Twin Moose Conventional Polymer Insulator 17 400kV Khedar-Kirori 2 D/C 6 HVPNL HPGCL HVPNL Twin Moose Conventional Polymer Insulator 18 400kV Khedar-Kirori 1 D/C 14 HVPNL HPGCL HVPNL Twin Moose Conventional E 19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional E 1 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional E D Not Available Not Available Not Available Not Available D Not Available D Not Available Not Available Not Available Not Available Not Available Not Availabl	
16 400kV Khedar-Kirori 1 D/C 6.2 HVPNL HPGCL HVPNL Twin Moose Conventional p 17 400kV Khedar-Kirori 2 D/C 6 HVPNL HVPNL HVPNL Twin Moose Conventional p 18 400kV Khedar-Nuhiawali 1 D/C 114 HVPNL HVPNL HVPNL Twin Moose Conventional E 19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional Conventional E Conventional Conventional Conventional E Convent	
17 400kv Khedar-Kirori 2 D/C 6 HVPNL HPGCL HVPNL Twin Moose Conventional pl 18 400kv Khedar-Nuhiawali 1 D/C 114 HVPNL HVPNL HVPNL Twin Moose Conventional E 19 400kv Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL PVPNL Twin Moose Conventional E 2 400kv Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional Not Available 2 400kv Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available 0	Presently there is no
18 400kV Khedar-Nuhiawali 1 D/C 114 HVPNL HVPRL HVPNL Twin Moose Conventional E 19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional Con	planning of replacment
19 400kV Nuhiawali-Fatehabad 1 D/C 78 HVPNL HVPNL POWERGRID Twin Moose Conventional C. PDD (Jammu & Kashmir) Image: Conventional of the second of the	Existing disc insulator
C. PDD (Jammu & Kashmir) Image: Constraint of the system of the syst	are of Porcelain
1 400kV Baglihar(stage 1)-Kishenpur 1 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Conventional 2 400kV Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available D. PSTCL	
2 400kV Baglihar(stage 1)-Kishenpur 2 D/C 68 JK PDD JKSPDCL POWERGRID Twin Moose Not Available D. PSTCL -	
D. PSTCL Image: Second secon	
1 400kV Behman Jassa- HMEL 1 D/C 17 PSTCL PSTCL PSTCL Twin Moose Not Available 2 400kV Behman Jassa- HMEL 2 D/C 17 PSTCL PSTCL PSTCL Twin Moose Not Available 3 400kV Behman Jassa- HMEL 2 D/C 17 PSTCL PSTCL PSTCL Twin Moose After LILO of 400 KV 3 400kV Behman Jassa- Moga 1 S/C 113 PSTCL PSTCL PSTCL PSTCL Twin Moose After LILO of 400 KV Not Available 4 400kV Makhu-Amritsar 1 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) Partial (10%)	
2 400kV Behman Jassa- HMEL 2 D/C 17 PSTCL PSTCL PSTCL Twin Moose Not Available 3 400kV Behman Jassa- Moga 1 S/C 113 PSTCL PSTCL PSTCL PSTCL Twin Moose After LILO of 400 KV TSPL to 400 KV Moga at 400 KV Behman Jassa- Singh Not Available 4 400kV Makhu-Amritsar 1 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 6 400kV Muktrar Makhu 1 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%)	
3 400kV Behman Jassa- Moga 1 S/C 113 PSTCL PSTCL PSTCL Twin Moose After LILO of 400 KV Moga at 400 KV Moga at 400 KV Moga at 500 KV Moga at	
4 400kV Makhu-Amritsar 1 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 6 400kV Multrar Makhu 1 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional	
5 400kV Makhu-Amritsar 2 D/C 64 PSTCL PSTCL PSTCL Twin Moose Partial (10%) 6 400kV Multrar Makhu 1 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional	
6 400kV Muktor Makhu 1 D/C 96 DSTCI DSTCI DSTCI Twin Moore	
7 400kV Muktsar-Makhu 2 D/C 96 PSTCL PSTCL PSTCL Twin Moose Conventional	
8 400kV Nakodar-Makhu 1 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional	
9 400kV Nakodar-Makhu 2 D/C 52 PSTCL PSTCL PSTCL Twin Moose Conventional	
10 400kV Nakodar-Moga 1 S/C 78 PSTCL PSPCL POWERGRID Twin Moose Not Available In set and the set a	LILO of 400kV Talwandi sabo-Nakodar at Moga
11 400kV Rajpura-Dhuri 1 D/C 86 PSTCL PSTCL PSTCL Twin Moose Conventional Li	Lilo of Rajpura th-Dhuri
12 400kV Rajpura TPS- Rajpura 1 D/C 9 PSTCL PSPCL PSTCL Twin Moose Conventional 1	1 at 400kV Rajpura
13 400kV Rajpura-Dhuri 2 D/C 86 PSTCL PSTCL PSTCL Twin Moose Conventional Li	Lilo of Rajpura th-Dhuri
14 400kV Rajpura TPS- Rajpura 2 D/C 9 PSTCL PSPCL PSTCL Twin Moose Not Available 2	2 at 400kV Rajpura
15 400kV Rajpura TPS-Nakodar 1 D/C 139 PSTCL PSPCL PSTCL Twin Moose Conventional	
16 400kV Rajpura TPS-Nakodar 2 D/C 139 PSTCL PSPCL PSTCL Twin Moose Conventional	
17 400kV Talwandi Saboo- Dhuri 1 D/C 175 PSTCL PSPCL PSTCL Twin Moose Partial (22%)	
18 400kV Talwandi Saboo- Dhuri 2 D/C 175 PSTCL PSPCL PSTCL Twin Moose Partial (22%)	
19 400kV Talwandi Saboo- Behman Jassa 1 D/C 20 PSTCL PSPCL PSTCL Twin Moose After LILO of 400 KV TSPL to 400 KV Moga at 400 KV Moga at 400 KV Moga at 500 KV	
20 400kV Talwandi Saboo- Nakodar 1 D/C 180 PSTCL PSPCL PSTCL Twin Moose Conventional	
21 400kV Talwandi Saboo- Muktsar 1 D/C 100 PSTCL PSTCL PSTCL Twin Moose Conventional	
22 400kV Talwandi Saboo- Muktsar 2 D/C 100 PSTCL PSPCL PSTCL Twin Moose Conventional	
E. PTCUL	
1 400kV Alaknanda(GVK)-Srinagar(PTCUL) 1 D/C 14 PTCUL GVKPIL PTCUL Twin Moose Conventional	
2 400kV Alaknanda(GVK)-Srinagar(PTCUL) 2 D/C 14 PTCUL GVKPIL PTCUL Twin Moose Conventional	
3 400kV Muradabad-Kashipur 1 S/C 108 PTCUL UPPTCL PTCUL Twin Moose Conventional	
4 400kV Rishikesh-Nehtaur 1 D/C 124 PTCUL PTCUL UPPTCL Twin Moose Not Available	LILO of 400kV

5	400kV	Nehtaur-Kashipur	2	D/C	80	PTCUL	UPPTCL	PTCUL	Twin Moose		Not Available	Rishikesh-Kashipur
6	400kV	Roorkee-Rishikesh	1	S/C	50	PTCUL	POWERGRID	PTCUL	Twin Moose	LILO portion is of POWERGRID	Not Available	
7	400kV	Roorkee-Muzaffarnagar	1	S/C	71	PTCUL	POWERGRID	UPPTCL	Twin Moose		Not Available	
F. RRVP	NL	·										
1	400kV	Ajmer-Bhilwara	1	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
2	400kV	Ajmer-Bhilwara	2	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
3	400kV	Akal-Barmer	1	S/C	124	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
4	400kV	Akal-Jodhpur	1	S/C	225	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
5	400kV	Akal-Ramgarh	1	D/C	99	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
6	400kV	Akal-Ramgarh	2	D/C	99	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
7	400kV	Anta-Chhabra	1	s/c	90	RRVPNL	RRVPNL	RVUNL	Quad Moose	Bypassed at Anta to form Chhabra- Kota(PG)	Not Available	
8	400kV	Anta-Chhabra SC	1	D/C	89	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
9	400kV	Anta-Chhabra SC	2	D/C	89	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
10	400kV	Anta-Kalisindh	1	D/C	80	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
11	400kV	Anta-Kalisindh	2	D/C	80	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
12	400kV	Anta-Kawai	1	D/C	50	RRVPNL	RRVPNL	Kawai(Adani)	Quad Moose		Not Available	
13	400kV	Anta-Kawai	2	D/C	50	RRVPNL	RRVPNL	Kawai(Adani)	Quad Moose		Not Available	
14	400kV	Anta-Kota (PG)	1	S/C	91	RRVPNL	RRVPNL	POWERGRID	Twin Moose	Bypassed at Anta to form Chhabra- Kota(PG)	Not Available	
15	400kV	Barmer-Bhinmal	1	D/C	144	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
16	400kV	Barmer-Bhinmal	2	D/C	144	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
17	400kV	Barmer-Jaisalmer-II (Bhaesada)	1	D/C	117	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
18	400kV	Barmer-Jaisalmer-II (Bhaesada)	2	D/C	117	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
19	400kV	Barmer-Rajwest	1	D/C	15	RRVPNL	RRVPNL	RAJWEST	Twin Moose		Conventional	
20	400kV	Bhadla-Jodhpur	1	D/C	106	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
21	400kV	Bhilwara-Chhabra	1	S/C	303	RRVPNL	RRVPNL	RVUNL	Twin Moose		Conventional	
22	400kV	Bhilwara-Chittorgarh(RRVPNL)	1	D/C	49	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
23	400kV	Bhilwara-Chittorgarh(RRVPNL)	2	D/C	49	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
24	400kV	Bikaner-Bhadla	1	D/C	189	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
25	400kV	Bikaner-Bhadla	2	D/C	189	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
26	400kV	Bikaner-Merta	1	S/C	172	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
27	400kV	Bikaner-Sikar(PG)	1	D/C	171	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
28	400kV	Bikaner-Sikar(PG)	2	D/C	171	RRVPNL	RRVPNL	POWERGRID	Twin Moose		Not Available	
29	400kV	Chhabra - Kawai SCTPS	1	S/C	45	RRVPNL	RVUNL	APRL	Twin Moose		Conventional	
30	400kV	Chhabra-Chhabra SC	1	D/C	2	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
31	400kV	Chhabra-Chhabra SC	2	D/C	2	RRVPNL	RRVPNL	RVUNL	Quad Moose		Not Available	
32	400kV	Heerapura-Hindaun	1	S/C	192	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
33	400kV	Hindaun-Chhabra	1	S/C	305	RRVPNL	RRVPNL	RVUNL	Twin Moose		Conventional	
34	400kV	Kakani (Jodhpur New)-Jodhpur	2	S/C	102	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
35	400kV	Kankani (Jodhpur New)-Akal	1	D/C	223	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
36	400kV	Kankani(Jodhpur New)-Jaisalmer-II(Bhainsra)	1	D/C	177	RRVPNL	RRVPNL	RRVPNL	Quad Moose	LILO of 400kV Kankani(Jodhpur New)· Akal ckt-2	Not Available	
37	400kV	Jaisalmer-II(Bhainsra)-Akal	1	D/C	61	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
38	400kV	Kankani (Jodhpur New)-Jodhpur	1	S/C	67	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
39	400kV	Kankani (Jodhpur New)-Merta	1	s/c	140	RRVPNL	RRVPNL	RRVPNL	Twin Moose	LILO of 400kV Jodhpur- Merta-1 at Kakani	Not Available	
40	400kV	Merta-Bhadla	1	D/C	175	RRVPNL	RRVPNL	RRVPNL	Twin Moose	LILO of 400kV Jodhpur- Merta-2 at Bhadla	Not Available	
41	400kV	Merta-Heerapura	1	S/C	175	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	
42	400kV	Merta-Ratangarh	1	S/C	173	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Conventional	

43	400kV	Phagi-Ajmer(RRVPNL)	1	D/C	109	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
44	400kV	Phagi-Ajmer(RRVPNL)	2	D/C	109	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
45	400kV	Phagi-Heerapura	1	D/C	52	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
46	400kV	Phagi-Heerapura	2	D/C	52	RRVPNL	RRVPNL	RRVPNL	Quad Moose		Not Available	
47	400kV	Rajwest - Kankani (Jodhpur New)	1	s/c	209	RRVPNL	RRVPNL	RRVPNL	Twin Moose	LILO of 400kV Jodhpur-Rajwest-I at Kakani	Not Available	
48	400kV	Rajwest-Jodhpur	1	D/C	209	RRVPNL	RWPL	RRVPNL	Twin Moose		Conventional	
49	400kV	Ramgarh-Bhadla	1	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
50	400kV	Ramgarh-Bhadla	2	D/C	160	RRVPNL	RRVPNL	RRVPNL	Twin Moose		Not Available	
51	400kV	Suratgarh-Bikaner	1	S/C	146	RRVPNL	RVUNL	RRVPNL	Twin Moose		Conventional	
52	400kV	Suratgarh-Ratangarh	1	S/C	144	RRVPNL	RVUNL	RRVPNL	Twin Moose		Conventional	
53	400kV	Suratgarh-Ratangarh	2	s/c	144	RRVPNL	RVUNL	RRVPNL	Twin Moose		Conventional	
54	400kV	Suratgarh-Suratgarh SC	1	S/C	2	RRVPNL	RVUNL	RVUNL	Ouad Moose		Not Available	
55	400kV	Suratgarh SC-Bikaner	1	D/C	140	RRVPNI	RVUNI	RRVPNI	Twin Moose		Not Available	
56	400kV	Suratgarh SC-Bikaner	2		140	RRVPNI	RVUNI	RRVPNI	Twin Moose		Not Available	
G LIDDI		Juratgarn Se-bikaner	2	0/0	140		RUONE		T WITT WIGOSC		Not Available	_
1	40044	Agra (Establish) Agra South	1	D/C	70				Twin Mooco		Not Available	
	400K V	Agra (Fateribau)-Agra Soutri		0/0	70	UPPICL	UPPICL	UPPICL	I WIII IVIOUSE		NOT AVAIIABLE	10.0 -5 400 114
2	400kV	Agra (UP)-Agra(Fatehbad)	1	s/c	104	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	Agra(UP)- Muradnagar(N) at Fatehabad(UP)
3	400kV	Agra UP-Unnao	1	S/C	279	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (25%)	
4	400kV	Agra(Fatehbad)-Mathura	1	S/C	142	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
5	400kV	Agra(Fatehbad)-Mathura	2	D/C	151	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	LILO of 400 kV Fatehabad(UP)- Muradnagar at Mathura
6	400kV	Alakhnanda-Vishnuprayag	1	D/C	109	UPPTCL	GVKPIL	JPVL	Twin Moose		Not Available	
7	400kV	Aligarh-Mainpuri	1	D/C	93	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
8	400kV	Aligarh-Mainpuri	2	D/C	93	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
9	400kV	Aligarh-Muradnagar	1	s/c	177	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	*Series Compensated line (40%). It would be shifted
10	400kV	Aligarh-Sikandrabad	1	D/C	95	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
11	400kV	Aligarh-Harduaganj	1	S/C	40	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
12	400kV	AnparaB-AnparaC	1	D/C	0.05	UPPTCL	UPRVUNL	LANCO	Quad Moose		Conventional	
13	400kV	AnparaB-AnparaC	2	D/C	0.05	UPPTCL	UPRVUNL	LANCO	Quad Moose		Conventional	
14	400kV	AnparaB-AnparaD	1	D/C	5	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Not Available	
15	400kV	AnparaB-AnparaD	2	D/C	5	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Not Available	
16	400kV	AnparaB-Mau	1	S/C	262	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Partial (13%)	
17	400kV	AnparaB-Obra B	1	s/c	40	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Partial	
18	400kV	AnparaB-Sarnath	1	D/C	158	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Partial	
19	400kV	AnparaB-Sarnath	2	D/C	158	UPPTCL	UPRVUNL	UPPTCL	Twin Moose		Conventional	
20	400kV	Ataur-Hapur	1	D/C	52	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
21	400kV	Ataur-Hapur	2	D/C	52	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
22	400kV	Ataur-Indirapuram	1	D/C	15	UPPTCI	UPPTCI	UPPTCI	Quad Moose		Not Available	
23	400kV	Ataur(UP)-Noida Sec 123(UP)	1	D/C	19	UPPTCL	UPPTCL	UPPTCL	Quad Moose (LILO portion Twin HTLS)	LILO of 400 KV ATAUR- INDIRAPURAM CKT-II	Not Available	
24	400kV	Indirapuram(UP)-Noida Sec 123(UP)	1	D/C	17	UPPTCL	UPPTCL	UPPTCL	Quad Moose (LILO portion Twin HTLS)	at 400 KV NOIDA SECTOR 123	Not Available	
25	400kV	Azamgarh-Mau	1	S/C	48	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (79%)	
26	400kV	Azamgarh-Tanda	1	D/C	153	UPPTCL	UPPTCL	NTPC	Twin Moose		Not Available	
27	400kV	Badaun-Sambhal	1	D/C	77	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
28	400kV	Badaun-Sambhal	2	D/C	77	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
29	400kV	Banda-Orai	1	D/C	108	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
30	400kV	Banda-Orai	2	D/C	108	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
----	-------	-------------------------------	---	-----	-----	--------	---------	-----------	------------	--	--	
31	400kV	Banda-Rewa road	1	D/C	177	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
32	400kV	Banda-Rewa road	2	D/C	177	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
33	400kV	Bara-Meja	1	D/C	32	UPPTCL	UPPTCL	MUNPL	Quad Moose	LILO of 400kV Bara- Rewa road D/C at Meja		
34	400kV	Bara-Meja	2	D/C	32	UPPTCL	UPPTCL	MUNPL	Quad Moose			
35	400kV	Bareilly UP-Unnao	1	D/C	271	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Partial (15%)	*Series Compensated line (45%)	
36	400kV	Bareilly UP-Unnao	2	D/C	271	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Partial (15%)	*Series Compensated line (45%)	
37	400kV	Gorakhpur UP-Azamgarh	1	S/C	90	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Partial (76%)		
38	400kV	Gr. Noida(765)-Sector 148	1	D/C	47	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
39	400kV	Gr. Noida(765)-Sector 148	2	D/C	47	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
40	400kV	Gr. Noida-Gr. Noida (765)	1	D/C	45	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
41	400kV	Gr. Noida-Gr. Noida (765)	2	D/C	45	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
42	400kV	Gr.Noida-Sikandrabad	1	D/C	17	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
43	400kV	Gr.Noida-Sikandrabad	2	D/C	17	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
44	400kV	Hapur-Dasna	1	D/C	14	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
45	400kV	Hapur-Dasna	2	D/C	14	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
46	400kV	Hapur-Moradabad	1	S/C	109	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
47	400kV	Hapur-Muradnagar	1	S/C	28	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
48	400kV	Harudaganj-Sikandarabad	1	S/C	115	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
49	400kV	Mainpuri(UP)-Mainpuri(PG)	1	D/C	25	UPPTCL	UPPTCL	POWERGRID	Twin Moose	Not Available	LILO of 400kV Orai- Mainpuri(PG) at	
50	400kV	Mainpuri(UP)-Mainpuri(PG)	2	D/C	26	UPPTCL	UPPTCL	POWERGRID	Twin Moose	Not Available	Mainpuri(UP)	
51	400kV	Meja-Musauli	1	D/C	65	UPPTCL	MUNPL	UPPTCL	Quad Moose	Not Available		
52	400kV	Meja-Rewa road	1	D/C	45	UPPTCL	MUNPL	UPPTCL	Quad Moose	Not Available		
53	400kV	Muradnagar New- Mathura	1	D/C	246	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available	LILO of 400 kV Fatehabad(UP)- Muradnagar at Mathura	
54	400kV	Muradnagar-Ataur	2	D/C	18	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
55	400kV	Musauli-Rewa road	1	D/C	34	UPPTCL	UPPTCL	UPPTCL	Quad Moose	Not Available		
56	400kV	Muzaffarnagar-Alakhnanda	1	D/C	189	UPPTCL	UPPTCL	GVKPIL	Twin Moose	Not Available		
57	400kV	Muzaffarnagar-Ataur	1	D/C	121	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
58	400kV	Muzaffarnagar-Vishnuprayag	1	D/C	280	UPPTCL	UPPTCL	JPVL	Twin Moose	Conventional		
59	400kV	Noida Sec 148 - Noida Sec 123	1	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
60	400kV	Noida Sec 148 - Noida Sec 123	2	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
61	400kV	Noida Sec 148-Noida Sec 123	1	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
62	400kV	Noida Sec 148-Noida Sec 123	2	D/C	20	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
63	400kV	Obra-Rewa road	1	S/C	179	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
64	400kV	Obra-Sultanpur	1	S/C	230	UPPTCL	UPRVUNL	UPPTCL	Twin Moose	Conventional		
65	400kV	Obra B - Obra C	1	S/C	1	UPPTCL	UPRVUNL	UPRVUNL	Twin Moose	Not Available		
66	400kV	Orai-Mainpuri(UP)	1	D/C	176	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
67	400kV	Orai-Mainpuri(UP)	2	D/C	176	UPPTCL	UPPTCL	UPPTCL	Twin Moose	Not Available		
68	400kV	Orai-Paricha	1	D/C	111	UPPTCL	UPPTCL	UPRVUNL	Twin Moose	Not Available		
69	400kV	Oral-Paricha	2	D/C	111	UPPTCL	UPPTCL	UPRVUNL	Twin Moose	Not Available		

70	400kV	Panki-Aligarh	1	S/C	285	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (24%)	
71	400kV	Rewa road -Panki	1	S/C	210	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	LILO of Bara-Panki at 400kV Rewa Road
72	400kV	Rosa-Badaun	1	D/C	85	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
73	400kV	Rosa-Badaun	2	D/C	85	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
74	400kV	Sarnath-Azamgarh	1	S/C	97	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
75	400kV	Lucknow_1(PG)-Mohanlalganj (PGYTL)	1	S/C	58	UPPTCL	POWERGRID	UPPTCL	Twin Moose	LILO of 400kV	Conventional	
76	400kV	Sultanpur(UP)-Mohanlalganj (PGYTL)	1	S/C	133	UPPTCL	UPPTCL	UPPTCL	Twin Moose	LUCKNOW(PG)-	Conventional	
77	400kV	Sultanpur-Tanda	1	D/C	103	UPPTCL	UPPTCL	NTPC	Twin Moose		Not Available	
78	400kV	Tanda-Basti	1	D/C	44	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
79	400kV	Tanda-Basti	2	D/C	44	UPPTCL	UPPTCL	UPPTCL	Quad Moose		Not Available	
80	400kV	Mohanlalganj (PGYTL)-Unnao(UP)	1	S/C	104	UPPTCL	UPPTCL	UPPTCL	Twin Moose	LILO of 400 KV	Partial (13%)	Status after LILO2
81	400kV	Lucknow(UP)-Mohanlalganj (PGYTL)	1	S/C	89	UPPTCL	UPPTCL	UPPTCL	Twin Moose	SAROJANI	Partial (13%)	
82	400kV	Unnao-Panki	1	S/C	49	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Partial (41%)	
83	400kV	Varanasi-Jaunpur	1	D/C	73	UPPTCL	POWERGRID	UPPTCL	Twin Moose		Not Available	
84	400kV	Varanasi-Jaunpur	2	D/C	73	UPPTCL	POWERGRID	UPPTCL	Twin Moose		Not Available	
85	400kV	Jaunpur (UP)-Obra_B(UP)	1	D/C	177	UPPTCL	UPPTCL	UPPTCL	Twin Moose	After LILO of 400 KV	Not Available	
86	400kV	Obra_C_TPS(UP)-Jaunpur (UP)	1	D/C	176	UPPTCL	UPPTCL	UPPTCL	Twin Moose	OBRA B- OBRA-C CKT-	Not Available	
87	400kV	Sambhal-Rampur	1	D/C	74	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
88	400kV	Sambhal-Rampur	2	D/C	74	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
89	400kV	Simbholi-Meerut_PMSTL	1	D/C	29	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
90	400kV	Simbholi-Meerut_PMSTL	2	D/C	29	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
91	400kV	Simbholi_PMSTL (UP)-Muradnagar_2(UP)	1	D/C	71	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
92	400kV	Simbholi_PMSTL (UP)-Muradnagar_2(UP)	2	D/C	71	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
93	400kV	Panki-Panki_TPS	1	S/C	1	UPPTCL	UPPTCL	UPPTCL	Twin Moose		Not Available	
H. PJFT	L											
1	400kV	Firozabad-Jawaharpur	1	D/C	40	PJFTL	PJFTL	UPRVUNL	Quad Moose	Anti-theft charging	Not Available	
2	400kV	Firozabad-Jawaharpur	2	D/C	40	PJFTL	PJFTL	UPRVUNL	Quad Moose	from Firozabad(PJFTL)	Not Available	
3	400kV	Agra South-Firozabad PJFTL	1	D/C	79	PJFTL	UPPTCL	PJFTL	Twin Moose	LILO of 400kV Agra South-Agra Fatehabad ckt-2 at Firozabad PJFTL	Not Available	
4	400kV	Agra(Fatehabad)-Firozabad PJFT	1	D/C	79	PJFTL	UPPTCL	PJFTL	Twin Moose		Not Available	
I. GTL												
1	400kV	Kanpur(PG)-Ghatampur_TPS(UP)	1	D/C	49	GTL	POWERGRID	UPPTCL	Twin Moose	Antitheft charging from	Not Available	
2	400kV	Kanpur(PG)-Ghatampur_TPS(UP)	2	D/C	49	GTL	POWERGRID	UPPTCL	Twin Moose	Kanpur(PG) Upto DEAD	Not Available	
J. HPPT	CL											_
1	400kV	Lahal-Chamba	1	D/C	35	HPPTCL	HPPTCL	POWERGRID	Twin Moose		Not Available	
2	400kV	Lahal-Chamba	2	D/C	35	HPPTCL	HPPTCL	POWERGRID	Twin Moose		Not Available	
K. NTPC	VL	I										_
1	400kV	Dadri-Loni (Harsh Vihar)	1	D/C	54	NTPC	NTPC	DTL	Twin Moose		Polymer	
2	400kV	Dadri-Loni (Harsh Vihar)	2	D/C	54	NTPC	NTPC	DTL	Twin Moose		Polymer	
L. MTSC	L											_
1	400kV	Ajmer-Deedwana	1	S/C	110	MTSCL	RRVPNL	MTSCL	Twin Moose		Not Available	
2	400kV	Bikaner-Deedwana	1	S/C	129	MTSCL	RRVPNL	MTSCL	Twin Moose		Conventional	
M. Arav	ali Transmission S	ervice Company Ltd (ATSCL)										
1	400kV	Alwar-Hindaun	1	s/c	96	ATSCL	ATSL	RRVPNL	Twin Moose		Not Available	Partly owned by Aravali Transmission Services ILtd.
N. BBM	B				L							
1	400kV	Dehar-Rajpura	1	s/c	129	BBMB	BBMB	PSTCL	Twin Morkulla+ LILO portion is of twin moose	Dehar-Bhiwani LILOed at Rajpura	Antifog	LILO of Dehar-Bhiwani at Raipura
2	400kV	Bhiwani(BBMB)-Rajpura	1	S/C	213	BBMB	BBMB	PSTCL		Dehar-Bhiwani LILOed at Rajpura	Antifog	

3	400kV	Dehar-Panchkula Panchkula-Paninat	1	s/c	125	BBMB	BBMB	POWERGRID	Twin Morkulla+ LILO portion is of twin moose	POWERGRID owned LILO portion of 9.034Km	Antifog	LILO of Dehar-Panipat at Panchkula
OTHE	R DEDICATED I	LINES	-	5, 5	100	55115	1 Official and	001110				
A. THDO	2											
1	400kV	Aligarh-Khurja	1	D/C	35	THDC	POWERGRID	THDC	Twin Moose		Not Available	
2	400kV	Aligarh-Khurja	2	D/C	35	THDC	POWERGRID	THDC	Twin Moose		Not Available	
5. 40	0kV Transmi	ssion Line charged at 220kV										
STATE	LINES											
A. RRVI	PNL											_
1	400kV charged at 220kV	Dholpur-Hindaun	1	S/C	100	RRVPNL	RRVUNL	RRVPNL	Twin Moose		Conventional	
2	400kV charged at 220kV	Kota-KTPS	1	D/C	7	RRVPNL	POWERGRID	RRVUNL	Twin Moose		Conventional	
3	400kV charged at 220kV	Kota-KTPS	2	D/C	7	RRVPNL	POWERGRID	RRVUNL	Twin Moose		Conventional	

* - Fixed series capacitor (FSC) is owned by POWERGRID

National Load Despatch Centre Import Capability of Punjab for December 2024

\ Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	10300	500	9800	5497	4303		https://www.punjab sldc.org/ATC_TTC.as px
Limiting Constr	aints	N-1 contigency of 400 Loading close to N-1 c 220 kV underlying net	i/220KV ICT at Rajpura contingency limits of 40 twork at Jalandhar, Luc	, Ludhiana, Jalandhar, 00/220kV Patran, Male dhiana and Amritsar	Muktsar erkotla and Patiala ICTs	5		

National Load Despatch Centre Import Capability of Uttar Pradesh for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	17300	600	16700	10165	6535		https://www.upsldc.or g/documents/20182/0/ ttc_atc_24-11- 16/4c79978e-35f2-4aef 8c0f-7f30d878dbde
Limiting Constraints		N-1 contingency o	f 400/220kV Obra,	Allahabad(PG), Go	rakhpur (UP), Agra	(PG), Lucknow (PG) ICT	S	

National Load Despatch Centre Import Capability of Haryana for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments	
1st December 2024 to 31st December 2024	00-24	10300	300	10000	5418	4582		https://hvpn.org. in/#/atcttc	
Limiting Constraints		N-1 contingency of 400/220kV ICT at Deepalpur, Hisar, Kabulpur and Panipat(BBMB)							

National Load Despatch Centre Import Capability of Rajasthan for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	7600	600	7000	5755	1245		https://sldc.rajast han.gov.in/rrvpnl /scheduling/dow nloads
Limiting Con	straints	N-1 contingency o	f 400/220kV Heera	ipura, Jodhpur, Bik	aner, Ajmer, Merta, H	indaun and Ratang	garh ICTs	

National Load Despatch Centre Import Capability of Delhi for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	7300	300	7000	4810	2190		https://www.del hisldc.org/resour ces/atcttcreport. pdf
Limiting Con	straints	N-1 contingency o	f 400/220kV Mund	lka, HarshVihar and	d Bawana (bus-split) IC	Ts.		

National Load Despatch Centre Import Capability of Uttarakhand for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	1710	100	1610	1402	208		<u>https://uksldc.in/ttc-</u> atc
Limiting Constraints		N-1 contingency of 40	0/220kV Kashipur ICT	s. High loading of 220k	V Roorkee-Roorkee ar	id 220kV CBGanj-Pantr	nagar lines	

National Load Despatch Centre Import Capability of HP for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	2386	100	2286	1130	1156		https://hpsldc.com/ mrm_category/ttc- atc-report/_
Limiting Constr	aints	Overloading of 2*100	MVA Giri transformers	5				

National Load Despatch Centre Import Capability of J&K for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	3200	100	3100	1977	1123		
Limiting Constr	aints	N-1 contigency of 400 220 kV underlying net	/220KV ICTs at Amarg work at Amargarh, Wa	arh agoora				

National Load Despatch Centre Import Capability of Chandigarh for December 2024

Issue Date: -

Issue Time: 1600

Date	Time Period in IST (hrs)	Total Transfer Capability (TTC) (MW)	Reliability Margin (MW)	Available Transfer Capability (ATC) (MW)	Approved General Network Access (MW)	Margin Available for Temporary General Network Access(MW)	Changes in TTC w.r.t. Last Revision	Comments
1st December 2024 to 31st December 2024	00-24	400	20	380	342	38		
Limiting Constr	aints	N-1 contigency of 220	kV Nallagarh-Kishenga	arh				